Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversal of epidermal hyperproliferation in psoriasis by insulin-like growth factor I receptor antisense oligonucleotides

Abstract

Epidermal hyperplasia is a key feature of the common skin disorder psoriasis. Stimulation of epidermal keratinocytes by insulin-like growth factor I (IGF-I) is essential for cell division, and increased sensitivity to IGF-I may occur in psoriasis. We hypothesized that inhibition of IGF-I receptor expression in the psoriasis lesion would reverse psoriatic epidermal hyperplasia by slowing the rate of keratinocyte cell division. Here we report the use of C5-propynyl-dU,dC-phosphorothioate antisense oligonucleotides to inhibit IGF-I receptor expression in keratinocytes. We identified several inhibitory antisense oligonucleotides and demonstrated IGF-I receptor inhibition in vitro through an mRNA targeting mechanism. Repeated injection of these oligonucleotides into human psoriasis lesions, grafted onto nude mice, caused a dramatic normalization of the hyperplastic epidermis. The findings indicate that IGF-I receptor stimulation is a rate-limiting step in psoriatic epidermal hyperplasia and that IGF-I receptor targeting by cutaneous administration of antisense oligonucleotides forms the basis of a potential new psoriasis therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduction in IGF-I receptor mRNA in HaCaT cells following treatment with antisense oligonucleotides.
Figure 2: Reduction in total cellular IGF-I receptor protein following antisense oligonucleotide treatment.
Figure 3: Reduction in IGF-I receptor numbers on the keratinocyte cell surface after antisense oligonucleotide treatment.
Figure 4: Reduction in keratinocyte cell number following antisense oligonucleotide treatment.
Figure 5: Reversal of epidermal hyperplasia in psoriatic human skin grafts on nude mice following intradermal injection with antisense oligonucleotides Grafted psoriasis lesions were injected with IGF-I receptor-specific antisense oligonucleotides, a random-sequence oligonucleotide in PBS, or with PBS alone, every 2 days for 20 days, then analyzed histologically.
Figure 6: Reversal of epidermal hyperplasia correlates with reduced IGF-I receptor mRNA in grafted psoriasis lesions treated with antisense oligonucleotides.

Similar content being viewed by others

References

  1. Krueger, J.G., Krane, J.F., Carter, D.M. & Gottlieb, A.B. Role of growth factors, cytokines, and their receptors in the pathogenesis of psoriasis. J. Invest. Dermatol. 94 (Suppl. ), 135S–140S (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Nickoloff, B.J. The cytokine network in psoriasis. Arch. Dermatol. 127, 871–884 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Gottlieb, A.B. Immunopathogenesis of psoriasis: the road from bench to bedside is a 2-way street [editorial]. Arch. Dermatol. 133, 781–782 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Finlay, A. & Coles, S. The effect of severe psoriasis on the quality of life of 369 patients. Br. J. Dermatol. 132, 236–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Leigh, I.M., Pulford, K.A., Ramaekers, F.C. & Lane, E.B. Psoriasis: maintenance of an intact monolayer basal cell differentiation compartment in spite of hyperproliferation. Br. J. Dermatol. 113 , 53–64 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Van Scott, E.J. & Ekel, T.M. Kinetics of hyperplasia in psoriasis. Arch. Dermatol. 88, 373– 381 (1963).

    Article  CAS  Google Scholar 

  7. Weinstein, G.D., McCullough, J.L. & Ross, P. Cell proliferation in normal epidermis. J. Invest. Dermatol. 82, 623–628 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Ristow, H.-J. Effect of insulin-like growth factor-I/somatomedin C on thymidine incorporation in cultured psoriatic keratinocytes after growth arrest in growth factor-free medium. Growth Regulation 3, 129– 137 (1993).

    CAS  PubMed  Google Scholar 

  9. Ristow, H.-J. Increased synergistic effect of EGF and IGF-I on DNA synthesis of cultured psoriatic keratinocytes. Dermatology 195, 213–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Krane, J., Gottlieb, A., Carter, M. & Krueger, J. The insulin-like growth factor I receptor is overexpressed in psoriatic epidermis, but is differentially regulated from the epidermal growth factor receptor. J. Exp. Med. 175, 1081–1090 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  11. Hodak, E., Gottlieb, A.B., Anzilotti, M. & Krueger, J.G. The insulin-like growth factor 1 receptor is expressed by epithelial cells with proliferative potential in human epidermis and skin appendages: Correlation of increased expression with epidermal hyperplasia. J. Invest. Dermatol. 106, 564–570 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  12. Krane, J.F., Murphy, D.P., Carter, D.M. & Krueger, J.G. Synergistic effects of epidermal growth factor (EGF) and insulin-like growth factor I/somatomedin C (IGF-I) on keratinocyte proliferation may be modulated by IGF-I transmodulation of the EGF receptor. J. Invest. Dermatol. 96, 419–424 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, S. et al. Altered insulin-like growth factor-II (IGF-II) level and IGF-binding protein-3 (IGFBP-3) protease activity in interstitial fluid taken from the skin lesion of psoriasis. J. Invest. Dermatol. 106, 109–112 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Wraight, C.J., Edmondson, S.R., Fortune, D.W., Varigos, G. & Werther, G.A. Expression of IGF binding protein-3 (IGFBP-3) in the psoriatic lesion. J. Invest. Dermatol. 108, 452–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, J.-P., Baker, J., Perkins, A., Robertson, E. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor-I (IGF-I) and type I IGF receptor (IGFIr). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  16. Stein, C.A. & Cheng, Y.-C. Antisense oligonucleotides as therapeutic agents—is the bullet really magical? Science 261, 1004–1012 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Wagner, R.W. Gene inhibition using antisense oligodeoxynucleotides. Nature 372, 333–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Monia, B.P. et al. Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522 ( 1993).

    CAS  PubMed  Google Scholar 

  19. Boukamp, P. et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761–771 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Wraight, C.J., Murashita, M.M., Russo, V.C. & Werther, G.A. Akeratinocyte cell line synthesizes a predominant insulin-like growth factor-binding protein (IGFBP-3) which modulates insulin-like growth factor-I action. J. Invest. Dermatol. 103, 627–631 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Wraight, C.J. & Werther, G.A. Insulin-like growth factor-I and epidermal growth factor regulate insulin-like growth factor binding protein-3 (IGFBP-3) in the human keratinocyte cell line, HaCaT. J. Invest. Dermatol. 105, 602–607 ( 1995).

    Article  Google Scholar 

  22. Bonnekoh, B., Wevers, A., Geisel, J., Rasokat, H. & Mahrle, G. Antiproliferative potential of zidovudine in human keratinocyte cultures. J. Am. Acad. Dermatol. 25, 483 –490 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Muller, K. & Prinz, H. Antipsoriatic anthrones with modulated redox properties. 4. Synthesis and biological activity of novel 9,10-dihydro-1,8-dihydroxy-9-oxo-2-anthracenecarboxylic and -hydroxamic acids. J. Med. Chem. 40, 2780–2787 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Geilen, C.C. et al. 1α, 25-dihydroxyvitamin D3 induces sphingomyelin hydrolysis in HaCaT cells via tumor necrosis factor α. J. Biol. Chem. 272, 8997–9001 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  25. Michel, G. et al. 1,25-(OH)2-vitamin D3 and calcipotriol induce IL-10 receptor gene expression in human epidermal cells. Inflamm. Res. 46, 32–4 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. White, P.J. et al. Oligonucleotide uptake in cultured keratinocytes: influence of cationic liposomes, cell type and confluence. J. Invest. Dermatol. 112, 699–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. White, P.J. et al. Live confocal microscopy of oligonucleotide uptake by keratinocytes in human skin grafts on nude mice. J. Invest. Dermatol. 112, 887–892 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Moulds, C. et al. Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry 34, 5044– 5033 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Flanagan, W.M., Su, L.L. & Wagner, R.W. Elucidation of gene function using C-5 propyne antisense oligonucleotides. Nature Biotechnol. 14, 1139–1145 (1996).

    Article  CAS  Google Scholar 

  30. Lewis, J.G. et al. A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc. Natl. Acad. Sci. USA 93, 3176–3181 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flanagan, W.M. & Wagner, R.W. Potent and selective gene inhibition using antisense oligodeoxynucleotides. Mol. Cell. Biochem. 172, 213–225 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  32. Stein, C.A. & Krieg, A.M. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res. Dev. 4, 67– 69 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Misra, P., Nickoloff, B.J., Morhenn, V.B., Hintz, R.L. & Rosenfeld, R.G. Characterization of insulin-like growth factor-I/somatomedin-C receptors on human keratinocyte monolayers. J. Invest. Dermatol. 87, 264– 267 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Krueger, G.G., Manning, D.D., Malouf, J. & Ogden, B. Long-term maintenance of psoriatic human skin on congenitally athymic (nude) mice. J. Invest. Dermatol. 64, 307– 312 (1975).

    Article  CAS  PubMed  Google Scholar 

  35. Haftek, M., Ortonne, J-P., Staquet, M-F., Viac, J. & Thivolet, J. Normal and psoriatic human skin grafts on “nude” mice: morphological and immunochemical studies. J. Invest. Dermatol. 76, 48– 52 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. Ristow, H.-J. & Messmer, T.O. Basic fibroblast growth factor and insulin-like growth factor I are strong mitogens for cultured mouse keratinocytes. J. Cell. Physiol. 137, 277–284 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Nickoloff, B., Misra, P., Morhenn, V., Hintz, R. & Rosenfeld, R. Further characterization of the keratinocyte somatomedin-C/insulin-like growth factor I (SM-C/IGF-I) receptor and the biological responsiveness of cultured keratinocytes to SM-C/IGF-I. Dermatologica 177, 265–273 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Barreca, A. et al. In vitro paracrine regulation of human keratinocyte growth by fibroblast-derived insulin-like growth factors. J. Cell. Physiol. 151, 262–268 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Tavakkol, A. et al. Expression of growth hormone receptor, insulin-like growth factor I (IGF-I) and IGF-I receptor mRNA and proteins in human skin. J. Invest. Dermatol. 99 343–349 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Pietrzkowski, Z., Sell, C., Lammers, R., Ullrich, A. & Baserga, R. Roles of insulinlike growth factor 1 (IGF-1) and the IGF-1 receptor in the epidermal growth factor-stimulated growth of 3T3 cells. Mol. Cell. Biol. 12, 3883– 3889 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Porcu, P. et al. The growth-stimulatory effect of simian virus 40 T antigen requires the interaction of insulin-like growth factor 1 with its receptor. Mol. Cell. Biol. 12, 5069–5077 ( 1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reiss, K., Porcu, P., Sell, C., Pietrzkowski, Z. & Baserga, R. The insulin-like growth factor 1 receptor is required for the proliferation of hemopoietic cells. Oncogene 7, 2243–2248 (1992).

    CAS  PubMed  Google Scholar 

  43. Resnicoff, M. et al. Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res. 54, 2218 –2222 (1994).

    CAS  PubMed  Google Scholar 

  44. Monia, B.P., Johnston, J.F., Geiger, T., Muller, M. & Fabbro, D. Antitumour activity of a phosphothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat. Med. 2, 668–675 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  45. Nanney, L.B., Yates, R.A., King, L.E., Jr. Modulation of epidermal growth factor receptors in psoriatic lesions during treatment with topical EGF. J. Invest. Dermatol. 98, 296–301 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  46. Ullrich, A. et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5, 2503– 2512 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shultz, J. et al. The amido black assay: a simple and quantitative multipurpose test of adhesion, proliferation and cytotoxicity in microplate cultures of keratinocytes (HaCaT) and other cell types growing adherently or in suspension. J. Immunol. Methods 167, 1–13 ( 1994).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the AusIndustry Syndicated Research and Development scheme and the Royal Children's Hospital Research Institute. We gratefully acknowledge the help and advice from Denys Fortune, Kathryn Wraight, David Randerson, Richard Wagner, David Atkins, and the late Peter Cable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Wraight.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wraight, C., White, P., McKean, S. et al. Reversal of epidermal hyperproliferation in psoriasis by insulin-like growth factor I receptor antisense oligonucleotides. Nat Biotechnol 18, 521–526 (2000). https://doi.org/10.1038/75382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing