Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Genetic engineering of proteins with cell membrane permeability

Abstract

The discovery of methods for generating proteins with inherent cell membrane-translocating activity will expand our ability to study and manipulate various intracellular processes in living systems. We report a method to engineer proteins with cell-membrane permeability. After a 12–amino acid residue membrane-translocating sequence (MTS) was fused to the C-terminus of glutathione S-transferase (GST), the resultant GST-MTS fusion proteins were efficiently imported into NIH 3T3 fibroblasts and other cells. To explore the applicability of this nondestructive import method to the study of intracellular processes, a 41-kDa GST-Grb2SH2-MTS fusion protein containing the Grb2 SH2 domain was tested for its effect on the epidermal growth factor (EGF)-stimulated signaling pathway. This fusion protein entered cells, formed a complex with phosphorylated EGF receptor (EGFR), and inhibited EGF-induced EGFR–Grb2 association and mitogen-activated protein kinase activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lin, Y.-Z., Yao, S., Veach, R.A., Torgerson, T.R., and Hawiger, J. 1995. Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 270: 14255–14258.

    Article  CAS  Google Scholar 

  2. Lin, Y.-Z., Yao, S., and Hawiger, J. 1996. Role of the nuclear localization sequence in fibroblast growth factor-1 -stimulated mitogenic pathways. J. Biol. Chem. 271: 5305–5308.

    Article  CAS  Google Scholar 

  3. Rojas, M., Yao, S., and Lin, Y.-Z. 1996. Controlling epidermal growth factor (EGF)- stimulated Ras activation in intact cells by a cell-permeable peptide mimicking phosphorylated EGF receptor. J. Biol. Chem. 271: 27456–27461.

    Article  CAS  Google Scholar 

  4. Liu, X.-Y., Timmons, S., Lin, Y.-Z., and Hawiger, J. 1996. Identification of a functionally important sequence in the cytoplasmic tail of integrinβ3 by using cell-permeable peptide analogs. Proc. Natl. Acad. Sci. USA 93: 11819–11824.

    Article  CAS  Google Scholar 

  5. Rojas, M., Yao, S., Donahue, J.P., and Lin, Y.-Z. 1997. An alternative to phosphotyrosine-containing motifs for binding to an SH2 domain. Biochem. Biophys. Res. Commun. 234: 675–680.

    Article  CAS  Google Scholar 

  6. Du, C., Yao, S., Rojas, M., and Lin, Y.-Z. 1998. Conformational and topological requirements of cell-permeable peptide function. J. Peptide Res. 51: 235–243.

    Article  CAS  Google Scholar 

  7. Lowenstein, E.J., Daly, R.J., Batzer, A.G., Li, W., Margolis, R., Lammers, R. et al. 1992. The SH2 and SH3 domain-containing protein Grb2 links receptor tyrosine kinases to ras signaling. Cell 70: 431–442.

    Article  CAS  Google Scholar 

  8. Delli Bovi, P., Curatola, A.M., Kern, F.G., Greco, A., Ittmann, M., and Basilico, C. 1987. An oncogene isolated by transfection of Kaposi's sarcoma DMA encodes a growth factor that is a member of the FGF family. Cell 50: 729–737.

    Article  CAS  Google Scholar 

  9. Kajstura, J., and Reiss, K. 1989. Measurement of cell swelling in a hypotonic medium as a rapid and sensitive test of cell injury. Folia Histochem. Cytobiol. 27: 39–48.

    CAS  PubMed  Google Scholar 

  10. Soler, C., Beguinot, L., and Carpenter, G. 1994. Individual epidermal growth factor receptor autophosphorylation sites do not stringently define association motifs for several SH2-containing proteins. J. Biol. Chem. 269: 12320–12324.

    CAS  PubMed  Google Scholar 

  11. Schlessinger, J., and Ullrich, A. 1992. Growth factor signaling by receptors tyrosine kinases. Neuron 9: 383–391.

    Article  CAS  Google Scholar 

  12. Carpenter, G. 1987. Receptors for epidermal growth factor and other polypeptide mitogens. Annu. Rev. Biochem. 56: 881–914.

    Article  CAS  Google Scholar 

  13. Egan, S.E., Giddings, B.W., Brooks, M.W., Buday, L., Sizeland, A.M., and Weinberg, R.A. 1993. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363: 45–51.

    Article  CAS  Google Scholar 

  14. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T., and Bowtell, D. 1993. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos-1. Nature 363: 83–85.

    Article  CAS  Google Scholar 

  15. Li, N., Batzer, A., Daly, R., Yajnik, V., Skolnik, E., Chardin, P. et al. 1993. The guanine nucleotide releasing factor, hSOS1, binds to Grb2 linking receptor kinases to Ras signaling. Nature 363: 85–88.

    Article  CAS  Google Scholar 

  16. Gale, N.W., Kaplan, S., Lowenstein, E.J., Schlessinger, J., and Bar-Sagi, D. 1993. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363: 88–92.

    Article  CAS  Google Scholar 

  17. Simon, M.A., Dodson, G.S., and Rubin, G.M. 1993. An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73: 169–177.

    Article  CAS  Google Scholar 

  18. Olivier, J.P., Raabe, T., Henkemeyer, M., Dickson, B., Mbamalu, G., Margolis, B. et al. 1993. A drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73: 179–191.

    Article  CAS  Google Scholar 

  19. Buday, L. and Downward, J. 1993. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adaptor protein, and Sos nucleotide exchange factor. Cell 73: 611–620.

    Article  CAS  Google Scholar 

  20. Chardin, P., Camonis, J.H., Gale, N.W., van Aelst, L., Schlessinger, J., Wigler, M.H. et al. 1993. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to Grb2. Science 260: 1338–1343.

    Article  CAS  Google Scholar 

  21. Batzer, A.G., Rotin, D., Urena, J.M., Skolnik, E.Y., and Schlessinger, J. 1994. Hierarchy of binding sites for Grb2 and She on the epidermal growth factor receptor. Mol. Cell. Biol. 14: 5192–5201.

    Article  CAS  Google Scholar 

  22. Williams, E.J., Dunican, D.J., Green, P.J., Howell, F.V., Derossi, D., Walsh, F.S. et al. 1997. Selective inhibition of growth factor-stimulated mitogenesis by a cell-permeable Grb2-binding peptide. J. Biol. Chem. 272: 22349–22354.

    Article  CAS  Google Scholar 

  23. Okutani, T., Okabayashi, Y., Kido, Y., Sugimoto, Y., Sakaguchi, K., Matuoka, K. et al. 1994. Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells. J. Biol. Chem. 269: 31310–31314.

    CAS  PubMed  Google Scholar 

  24. Songyang, Z., Shoelson, S.E., McGlade, J., Olivier, P., Pawson, T., Bustelo, X.R. et al. 1994. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14: 2777–2785.

    Article  CAS  Google Scholar 

  25. Schindler, C., Fu, X.-Y., Improta, T., Aebersold, R., Darnell, J.E. Jr. 1992. Proteins of transcription factor ISGF-3: one gene encodes the 91 - and 84-kDa ISGF-3 proteins that are activated by interferon α. Proc. Natl. Acad. Sci. USA 89: 7836–7839.

    Article  CAS  Google Scholar 

  26. Pawson, T., and Scott, J.D. 1997. Signaling through scaffold, anchoring, and adaptor proteins. Science 278: 2075–2080.

    Article  CAS  Google Scholar 

  27. Smith, D.B. and Johnson, K.S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31–40.

    Article  CAS  Google Scholar 

  28. Ausubel, F.M., Brent, R., Kinston, R.E., Moore, D.D., Sidman, J.G., Smith, J.A. et al. (eds). 1995. Current protocols in molecular biology. John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Zhong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, M., Donahue, J., Tan, Z. et al. Genetic engineering of proteins with cell membrane permeability. Nat Biotechnol 16, 370–375 (1998). https://doi.org/10.1038/nbt0498-370

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0498-370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing