Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oligonucleoside Methylphosphonates as Antisense Reagents

Abstract

Oligonucleoside methylphosphonates contain nonionic internucleotide bonds that resist degradation by cellular nucleases and allow the oligomers to be taken up intact by mammalian cells in culture. An-tisense methylphosphonate oligomers targeted against cellular or viral mRNA ini-tation codon or coding regions or against precursor mRNA splice sites effectively and specifically inhibit mRNA expression in cells. The efficacy of antisense methylphosphonate oligomers can be enhanced by derivatization with functional groups that allow the oligomer to covalently cross-link with its targeted mRNA. These oligonucleotide analogs will be useful tools for studying and controlling gene expression and are also promising candidates for development as therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen, J.C. (Ed.). 1989. Oligodeoxyribonucleotides. Antisense Inhibitors of Gene Expression. Topics in Molecular and Structural Biology 12. MacMillan Press, London.

    Google Scholar 

  2. Cooney, M., Czernuszewicz, G., Postel, E.H., Flint, S.J. and Hogan, M. 1988. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 241: 456–464.

    Article  CAS  Google Scholar 

  3. Francois, J.C., Sainson-Behmoaras, T. and Helene, C. 1988. Sequence-specific recognition of the major groove of DNA by oligode-oxynucleotides via triple helix formation. Footprinting studies. Nucleic Acids Res. 16: 11431–11440.

    Article  CAS  Google Scholar 

  4. Povsic, T.J. and Dervan, P.B. 1989. Triple helix formation by oligonucleotides on DNA extended to the physiological pH range. J. Am. Chem. Soc. 111: 3059–3061.

    Article  CAS  Google Scholar 

  5. Maher, III, L.J., Wold, B. and Dervan, P.B. 1989. Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245: 725–730.

    Article  CAS  Google Scholar 

  6. Griffin, L.C. and Dervan, P.B. 1989. Recognition of thymine-adenine base pairs by guanine in a pyrimidine triple helix motif. Science 245: 967–971.

    Article  CAS  Google Scholar 

  7. Corey, D., Pei, D. and Schultz, P. 1989. Sequence-selective hydrolysis of duplex DNA by an oligonucleotide-directed nuclease. J. Amer. Chem. Soc. 111: 8523–8525.

    Article  CAS  Google Scholar 

  8. Francois, J.-C., Saison-Behmoaras, T., Barbier, C., Chassignol, M., Thuong, N. and Helene, C. 1989. Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate. Proc. Natl. Acad. Sci. USA 86: 9702–9706.

    Article  CAS  Google Scholar 

  9. Sun, J.-S., Francois, J.-C., Montenay-Garestier, T., Saison-Behmoaras, T., Roig, V., Thuong, N. and Helene, C. 1989. Sequence-specific intercalating agents: Intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates. Proc. Natl. Acad. Sci. USA. 86: 9198–9202.

    Article  CAS  Google Scholar 

  10. Francois, J.-C., Saison-Behmoaras, T., Thuong, N. and Helene, C. 1989. Inhibition of restriction endonuclease cleavage via triple helix formation by homopyrimidine oligonucleotides. Biochemistry 28: 9617–9619.

    Article  CAS  Google Scholar 

  11. Strobel, S. and Dervan, P. 1990. Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation. Science 249: 73–75.

    Article  CAS  Google Scholar 

  12. Horne, D. and Dervan, P. 1990. Recognition of mixed-sequence duplex DA by alternate-strand triple-helix formation. J. Am. Chem. Soc. 112: 2435–2437.

    Article  CAS  Google Scholar 

  13. Perrouault, L., Asseline, U., Rivalle, C., Thuong, N.T., Bisagni, E., Giovannangeli, C., Le Doan, T. and Helene, C. 1990. Sequence-specific artificial photoinduced endonucleases based on triple helix-forming oligonucleotides. Nature 344: 359–360.

    Article  Google Scholar 

  14. Birg, F., Preseuth, D., Zerial, A., Thuong, N.T., Asseline, U., Le Doan, T. and Helene, C. 1990. Inhibition of simian virus 40 DNA replication in CV-1 cells by an oligodeoxynucleotide covalently linked to an intercalating agent. Nucleic Acids Res. 18: 2901–2908.

    Article  CAS  Google Scholar 

  15. Helene, C. and Toulme, J.-J. 1989. Control of gene expression by oligodeoxynucleotides covalently linked to intercalating agents and nucleic acid-cleaving reagents, p. 135–172. In: Oligodeoxyribonucleotides. Antisense Inhibitors of Gene Expression. J. S. Cohen (Ed.). Topics in Molecular and Structural Biology 12. MacMillan Press, London.

    Google Scholar 

  16. Miller, P.S. and Ts'o, P.O.P. 1988. Oligonucleotide inhibitors of gene expression in living cells: New opportunities in drug design. Annual Reports Med. Chem. 23: 295–304.

    Article  CAS  Google Scholar 

  17. Miller, P.S. 1990. Antisense nucleic acid analogues as potential antiviral agents, p. 343–360. In: Herpesvirus, the Immune System and AIDS. L. Aurelian (Ed.). Kluwer Academic Publishers, Boston.

    Chapter  Google Scholar 

  18. Uhlmann, E. and Peyman, A. 1990. Antisense oligonucleotides: A new therapeutic principle. Chem. Rev. 90: 544–579.

    Article  Google Scholar 

  19. Stein, C., Mori, K., Loke, S., Subasinghe, C., Shinozuka, K., Cohen, J. and Neckers, L. 1988. Phosphorothioate and normal oligodeoxyribo-nucleotides with 5′-linked acridine: characterization and preliminary kinetics of cellular uptake. Gene 72: 333–341.

    Article  CAS  Google Scholar 

  20. Loke, S., Stein, C., Zhang, X., Mori, K., Nakanishi, M., Subasinghe, C., Cohen, J. and Neckers, L. 1989. Characterization of oligonucleotide transport into living cells. Proc. Natl. Acad. Sci. USA 86: 3474–3478

    Article  CAS  Google Scholar 

  21. Yakubov, L., Deeva, E., Zarytova, V., Ivanova, E., Ryte, A., Yurch-enko, L. and Vlassov, V. 1989. Mechanism of oligonucleotide uptake by cells: Involvement of specific receptors? Proc. Natl. Acad. Sci. USA 86: 6454–6458.

    Article  CAS  Google Scholar 

  22. Cazenave, C., Chevrier, M., Thuong, N.T. and Helene, C. 1987. Rate of degradation of alpha- and beta-oligodeoxynucleotides in Xenopus oocytes. Implications for anti-messenger strategies. Nucleic Acids Res. 15: 10507–10521.

    Article  CAS  Google Scholar 

  23. Jessus, C., Cazenave, C., Ozon, R. and Helene, C. 1988. Specific inhibition of endogenous beta-tubulin synthesis in Xenopus oocytes by anti-messenger oligodeoxynucleotides. Nucleic Acids Res. 16: 2225–2233.

    Article  CAS  Google Scholar 

  24. Shuttleworth, J. and Colman, A. 1988. Antisense oligonucleotide-directed cleavage of mRNA in Xenopus oocytes and eggs. EMBO J. 7: 427–434.

    Article  CAS  Google Scholar 

  25. Saxena, S. and Ackerman, E. 1990. Microinjected oligonucleotides complementary to the alpha-sarcin loop of 28 S RNA abolish protein synthesis in Xenopus oocytes. J. Biol. Chem. 265: 3263–3269.

    CAS  PubMed  Google Scholar 

  26. Blondel, D., Harmison, G. and Schubert, M. 1990. Role of matrix protein in cytopathogenesis of vesicular stomatitis virus. J. Virol. 64: 1716–1725.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Woolf, T.M., Jennings, C.G.B., Rebagliati, M. and Melton, D.A. 1990. The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos. Nucleic Acids Res. 18: 1763–1769

    Article  CAS  Google Scholar 

  28. Miller, P.S. 1989. Non-ionic antisense oligonucleotides, p. 79–95. In: Oligodeoxyribonucleotides. Antisense Inhibitors of Gene Expression. J. S. Cohen (Ed.). Topics in Molecular and Structural Biology 12. MacMillan Press, London.

    Google Scholar 

  29. Matteucci, M. 1990. Deoxyoligonucleotide analogs based on formace-tal linkages. Tetrahedron Letters 17: 2385–2388.

    Article  Google Scholar 

  30. Droman, M.A., Noble, S.A., McBride, L.J. and Caruthers, M.H. 1984. Synthesis of oligonucleotides and oligodeoxynucleotide analogs using phosphoramidite intermediates. Tetrahedron 49: 95–102.

    Article  Google Scholar 

  31. Jager, A. and Engels, J. 1984. Synthesis of deoxynucleoside methylphos-phonates via a phosphonamidite approach. Tetrahedron Letters 25: 1437–1440.

    Article  Google Scholar 

  32. Stec, W.J., Zon, G., Egan, W., Byrd, R.A., Phillips, L.R. and Gallo, K.A. 1985. Solid-phase synthesis, separation and stereochemical aspects of P-chiral methane-and 4,4′-dimethoxytriphenyl-methanephos-phonate analogues of Oligodeoxyribonucleotides. J. Org. Chem. 50: 3908–3913.

    Article  CAS  Google Scholar 

  33. Agrawal, S. and Goodchild, J. 1987. Oligodeoxynucleoside methylphosphonates: synthesis and enzymic degradation. Tetrahedron Letters 28: 3539–3542.

    Article  CAS  Google Scholar 

  34. Murakami, A., Blake, K.R. and Miller, P.S. 1985. Characterization of sequence-specific oligodeoxyribonucleoside methylphosphonates and their interaction with rabbit globin mRNA. Biochemistry 24: 4041–4046.

    Article  CAS  Google Scholar 

  35. Lee, B.L., Murakami, A., Blake, K.R. and Miller, P.S 1988. Interaction of psoralen-derivatized oligodeoxyribonucleoside methylphosphonates with single-stranded DNA. Biochemistry 27: 3197–3203.

    Article  CAS  Google Scholar 

  36. Lee, B.L., Blake, K.R. and Miller, P.S. 1988. Interaction of psoralen-derivatized oligodeoxyribonucleoside methylphosphonates with synthetic DNA containing a promoter for T7 RNA polymerase. Nucleic Acids Res. 16: 10681–10697.

    Article  CAS  Google Scholar 

  37. Kean, J.M., Murakami, A., Blake, K.R., Cushman, C.D. and Miller, P.S. 1988.Photochemical cross-linking of psoralen-derivatized oligonucleoside methylphosphonates to rabbit globin messenger RNA. Biochemistry 27: 9113–9121.

    Article  CAS  Google Scholar 

  38. Bhan, P. and Miller, P.S. 1990. Photo cross-linking of psoralen derivatized oligonucleoside methylphosphonates to single stranded DNA. Bioconjugate Chemistry 1: 82–88.

    Article  CAS  Google Scholar 

  39. Amirkhanov, N. and Zarytova, F. 1989. Reactive oligonucleotides bearing methylphosphonate groups. III. Affinity modification of nucleic acid target by 4-(N-2-chloroethyl-N-methylamino)benzyl-3′-and 5′-phosphoamide derivatives having stereoregular methylphosphonate residues. Bioorganicheskaya Khimiya 15: 379–385.

    CAS  PubMed  Google Scholar 

  40. Lin, S.-B., Blake, K.R., Miller, P.S. and Ts'o, P.O.P. 1989. Use of EDTA derivatization to characterize interactions between oligodeoxyribonucleoside methylphosphonates and nucleic acids. Biochemistry 28: 1054–1061.

    Article  CAS  Google Scholar 

  41. Froehler, B. and Matteucci, M. 1988. Phosphoramidate analogues of DNA: synthesis and thermal stability of heteroduplexes. Nucleic Acids Res. 16: 4831–4839.

    Article  CAS  Google Scholar 

  42. Sarin, P.S., Agrawal, S., Civeira, M.P., Goodchild, J., Ikeuchi, T. and Zamecnik, P.C. 1988. Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates. Proc. Natl. Acad. Sci. USA 85: 7448–7451.

    Article  CAS  Google Scholar 

  43. Quartin, R.S. and Wetmur, J.G. 1989. Effect of ionic strength on the hybridization of oligodeoxynucleotides with reduced charge due to methylphosphonate linkages to unmodified oligodeoxynucleotides containing the complementary sequence. Biochemistry 28: 1040–1047.

    Article  CAS  Google Scholar 

  44. Miller, P.S., Dreon, N., Pulford, S.M. and McParland, K.B. 1980. Oligothymidylate analogues having stereoregular, alternating meth-ylphosphonate/phosphodiester backbones. Synthesis and physical studies. J. Biol. Chem. 235: 9659–9665.

    Google Scholar 

  45. Lesnikowski, Z.J., Jaworska, M. and Stec,W.J. 1990. Octa(thymidine methanephosphonates) of partially defined stereochemistry: synthesis and effect of chirality at phosphorus on binding to pentadecadeoxyri-boadenylic acid. Nucleic Acids Res. 18: 2109–2115.

    Article  CAS  Google Scholar 

  46. Miller, P.S., Bhan, P., Cushman, C.D., Kean, J.M. and Levis, J.T. 1990. Antisense oligonucleoside methylphosphonates and their derivatives. Nucleosides and Nucleotides In press.

    Google Scholar 

  47. Miller, P.S., McParland, K.B., Jayaraman, K. and Ts'o, P.O.P. 1981. Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry 20: 1874–1880.

    Article  CAS  Google Scholar 

  48. Marcus-Sekura, C.J., Woerner, A.M., Shinozuka, K., Zon, G. and Quinnan, G.V., Jr. 1987. Comparative inhibition of chloramphenicol acetyltransferase gene expression by antisense oligonucleotide analogues having alkyl phosphotriester, methylphosphonate and phos-phorothioate linkages. Nucleic Acids Res. 15: 5749–5763.

    Article  CAS  Google Scholar 

  49. Vasanthakumar, G. and Ahmed, N.K. 1989. Modulation of drug resistance in a daunorubicin resistance subline with oligonucleoside methylphosphonates. Cancer Communications 1: 225–232.

    CAS  PubMed  Google Scholar 

  50. Jayaraman, K., McParland, K., Miller, P. and Ts'o, P.O.P. 1981. Selective inhibition of Escherichia coli protein synthesis and growth by nonionic oligonucleotides complementary to the 3′ end of 16S rRNA. Proc. Natl. Acad. Sci. USA 78: 1537–1541.

    Article  CAS  Google Scholar 

  51. Blake, K.R., Murakami, A., Spitz, S.A., Glave, S.A., Reddy, M.P., Ts'o, P.O.P. and Miller, P.S. 1985. Hybridization arrest of globin synthesis in a rabbit reticulocyte lysate and in rabbit reticulocytes by oligodeoxyribonucleoside methylphosphonates. Biochemistry 24: 6139–6145.

    Article  CAS  Google Scholar 

  52. Agris, C.H., Blake, K.R., Miller, P.S., Reddy, M.P. and Ts'o, P.O.P. 1986. Inhibition of vesicular stomatitis virus protein synthesis and infection by sequence-specific oligodeoxyribonucleoside methylphosphonates. Biochemistry 25: 6268–6275.

    Article  CAS  Google Scholar 

  53. Yu, Z., Chen, D., Black, R.J., Blake, K., Ts'o, P.O.P., Miller, P. and Chang, E.H. 1989. Sequence specific inhibition of in vitro translation of mutated or normal ras p21. J. Experimental Pathology 4: 97–108.

    CAS  Google Scholar 

  54. Maher, L.J., III and Dolnick, B.J. 1987. Specific hybridization arrest of dihydrofolate reductase mRNA in vitro using anti-sense RNA or anti-sense oligonucleotides. Arch. Biochem. Biophys. 253: 214–220.

    Article  CAS  Google Scholar 

  55. Walder, R.Y. and Walder, J.A. 1988. Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 85: 5011–5015.

    Article  CAS  Google Scholar 

  56. Quartin, R., Brakel, C. and Wetmur, J. 1989. Number and distribution of methylphosphonate linkages in oligodeoxynucleotides affect exo- and endonuciease sensitivity and ability to form RNase H substrates. Nucleic Acids Res. 17: 7253–7262.

    Article  CAS  Google Scholar 

  57. Furdon, P., Dominski, Z. and Kole, R. 1989. RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate, phosphorothioate and phosphodiester bonds. Nucleic Acids Res. 17: 9193–9204.

    Article  CAS  Google Scholar 

  58. Agrawal, S., Mayrand, S., Zamecnik, P. and Pederson, T. 1990. Site-specific excision from RNA by RNase H and mixed-phosphate-backbone oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 87: 1401–1405.

    Article  CAS  Google Scholar 

  59. Miller, P.S. 1991. Antisense oligonucleoside methylphosphonates. In: Antisense RNA and DNA J. A. H. Murray (Ed.). J. Wiley and Sons, New York.

    Google Scholar 

  60. Miller, P.S., Agris, C.H., Aurelian, L., Blake, K.R., Murakami, A., Reddy, M.P., Spitz, S.A. and Ts'o, P.O.P. 1985. Control of ribonu-cleic acid function by oligonucleoside methylphosphonates. Biochimie 67: 769–776.

    Article  CAS  Google Scholar 

  61. Smith, C.C., Aurelian, L., Reddy, M.P., Miller, P.S. and Ts'o, P.O.P. 1986. Antiviral effect of an oligo (nucleoside methylphosphonate) complementary to the splice junction of herpes simplex virus type 1 immediate early pre-mRNAs 4 and 5. Proc. Natl. Acad. Sci. USA 83: 2787–2791.

    Article  CAS  Google Scholar 

  62. Kulka, M., Smith, C., Aurelian, L., Fishelevich, R., Meade, K., Miller, P. and Ts'o, P.O.P. 1989. Site specificity of the inhibitory effects of oligo(nucleoside methylphosphonates) complementary to the acceptor splice junction of herpes simplex virus type 1 immediate early mRNA 4. Proc. Natl. Acad. Sci. USA 86: 6868–6872.

    Article  CAS  Google Scholar 

  63. Zaia, J.J., Rossi, J.J., Murakawa, G.J., Spallone, P.A, Stephens,D.A., Kaplan,R.E., Eritja,R., Wallace, R.B. and Cantin,E.M. 1988. Inhibition of human immunodeficiency virus by using an oligonucleoside methylphosphonate targeted to the tat-3 gene. J. Virol. 62: 3914–3917.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brown, D., Yu, Z., Miller, P., Blake, K., Wei, C., Black, R., Ts'o, P. and Chang, E. 1989. Modulation of ras expression by anti-sense, nonionic deoxyoligonucleotide analogs. Oncogene Research 4: 243–252.

    CAS  PubMed  Google Scholar 

  65. Chen,T.-L., Miller,P.S., Ts'o, P.O.P. and Colvin,O.M. 1990. Disposition and metabolism of oligodeoxynucleoside methylphosphonate following a single IV injection in mice. Drug Metabolism and Disposition. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, P. Oligonucleoside Methylphosphonates as Antisense Reagents. Nat Biotechnol 9, 358–362 (1991). https://doi.org/10.1038/nbt0491-358

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0491-358

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing