Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Amino Terminal Acetylation of Authentic Human Cu,Zn Superoxide Dismutase Produced in Yeast

Abstract

Human Cu,Zn superoxide dismutase (HSOD) is an Nα–acetylated enzyme, which may be useful in the prevention of post–ischemic damage. Since HSOD expressed in E. coli is not Nα–acetylated we have investigated expression and Nα–acetylation in yeast. HSOD has been expressed at very high levels in yeast utilizing the yeast glyceraldehyde phosphate dehydrogenase promoter. It is soluble, of normal specific activity and confers low level resistance to copper and zinc. The yeast HSOD is acetylated at its N–terminus indicating that yeast cells may be useful for the production of Nα–acetylated proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kelbanoff, S.J. and Clark, R.A. 1978. The metabolic burst. p. 283–368. In: The Neutrophil: Function & Clinical Disorders, North-Holland, Amsterdam.

    Google Scholar 

  2. McCord, J.M. 1979. Superoxide, superoxide dismutase and oxygen toxicity, p. 109–125. In: Reviews in Biochemical Toxicology. Hodgson, E., Bend, J. R. amp; Philpot, R. M. (eds.), Elsevier North Holland Inc., New York.

    Google Scholar 

  3. McCord, J.M. 1985. Oxygen-Derived Free Radicals in Postischemic Tissue Injury. N. Engl. J. Med. 312: 159–163.

    Article  CAS  PubMed  Google Scholar 

  4. Flohe´, L., Giertz, H., and Beckmann, R. 1985. Free radical scavengers as anti-inflammatory drugs, p. 255–281. In: Handbook of Inflammation, Volume 5: The Pharmacology of Inflammation. Bonta, I. L., Bray, M. A., & Parnham, M. J. (eds.), Elsevier Science Publishers B.V.

    Google Scholar 

  5. Haber, F., Weiss, J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London Ser. A. 147: 332–351.

    CAS  Google Scholar 

  6. Cohen, G. 1977. In defense of Haber-Weiss, p. 317. In: Superoxide and Superoxide Dismutases. Michelson, A. M., McCord, J. M., & Fridovich, I. (eds.), Academic Press, London.

    Google Scholar 

  7. Petrone, W.F., English, D.K., Wong, K., and McCord, J.M. 1980. Free radicals and inflammation: Superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc. Natl. Acad. Sci. USA. 77: 1159–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCord, J.M., Keele, B.B. Jr., and Fridovich, I. 1971. An enzyme-based theory of obligate anaerobiois: The physiological function of superoxide dismutase. Proc. Natl. Acad. Sci. USA 68: 1024–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marklund, S.L., Holme, E., and Hellner, L. 1982. Superoxide dismutase in extracellular fluids. Clinica Chimica Act. 126: 41–51.

    Article  CAS  Google Scholar 

  10. Kelly, K., Boux, H., Petkau, A., and Sehon, A. 1982. On the safety of treatment with bovine superoxide dismutase: production of a humoral antibody response in rabbits with repeated treatment. Can. J. Physiol. Pharmacol. 60: 1374–1381.

    Article  CAS  PubMed  Google Scholar 

  11. Flohe´, L., Biehl, G., Hofer, H., Kadrnka, F., Kölbel, R. and Puhl, W. 1980. Effectiveness of superoxide dismutase in osteoarthritis of the knee joint. Results of a double blind multicenter clinical trial, p. 424–431. In: Biological and Clinical Aspects of Superoxide and Superoxide Dismutase. Developments in Biochemistry, Vol. 11 B, Bannister, W. H., & Bannister, J. V. (eds.), Elsevier, New York.

    Google Scholar 

  12. Hallewell, R.A., Masiarz, F.R., Najarian, R.C., Puma, J.P., Quiroga, M.R., Randolph, A., Sanchez-Pescador, R., Scandella, C.J., Smith, B., Steimer, K.S., and Mullenbach, G.T. 1985. Human Cu/Zn superoxide dismutase cDNA: isolation of clones synthesising high levels of active or inactive enzyme from an expression library. Nucleic Acids Res. 13: 2017–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinman, H.M. 1980. The amino acid sequence of copper-zinc superoxide dismutase from Bakers' yeast. J. Biol. Chem. 255: 6758–6765.

    CAS  PubMed  Google Scholar 

  14. Travis, J., Owen, M., George, P., Carrell, R., Rosenberg, S., Hallewell, R.A., and Barr, P.J. 1985. Isolation and properties of recombinant DNA produced variants of human α1-proteinase inhibitor. J. Biol. Chem. 260: 4384–4389.

    CAS  PubMed  Google Scholar 

  15. Beggs, J.D. 1978. Transformation of yeast by a replicating hybrid plasmid. Nature 275: 104–109.

    Article  CAS  PubMed  Google Scholar 

  16. Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., and Boyer, H.W. 1977. Construction and characterization of new cloning vehicles II. A multipurpose cloning system. Gene 2: 95–113.

    Article  CAS  PubMed  Google Scholar 

  17. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular Cloning, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  18. Sherman, F., Fink, G.R., and Hicks, J.B. 1982. Methods in Yeast Genetics, Cold Spring Harbor, New York.

    Google Scholar 

  19. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  20. Erhart, E. and Hollenberg, C.P. 1983. The presence of a defective LEU2 gene on 2μ DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156: 625–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Forman, H.J. and Fridovich, I. 1973. On the stability of bovine superoxide dismutase. J. Biol. Chem. 248: 2645–2649.

    CAS  PubMed  Google Scholar 

  22. Friedman, S.M. 1978. Biochemistry of Thermophily, p. 223–232. Academic Press, New York.

    Google Scholar 

  23. Malinowski, D.P. and Fridovich, I. 1979. Subunit association and side chain reactivities of bovine erythrocyte superoxide dismutase in denaturing solvents. Biochemistry 18: 5055–5060.

    Article  CAS  PubMed  Google Scholar 

  24. Valentine, J.S. and Pantoliano, M.W. 1981. Protein-metal ion interactions in cuprozinc protein (Superoxide Dismutase) p. 291–358. In: Metal Ions in Biology, Volume III. Spiro, T. G. (ed.), John Wiley & Sons, NY.

    Google Scholar 

  25. Fee, J.A. 1982. Is superoxide important in oxygen poisoning? Trends Biochem. Sci. 7: 84–86.

    Article  CAS  Google Scholar 

  26. Karin, M., Najarian, R., Haslinger, A., Valenzuela, P., Welch, J., and Fogel, S. 1984. Primary structure and transcription of an amplified genetic locus: The CUP1 locus of yeast. Proc. Natl. Acad. Sci. USA 81: 337–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fogel, S. and Welch, J.W. 1982. Tandem gene amplification mediates copper resistance in yeast. Proc. Natl. Acad. Sci. USA 79: 5342–5346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marklund, S. and Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469–474.

    Article  CAS  PubMed  Google Scholar 

  29. Aberth, W., Straub, K.M., and Burlingame, A.L. 1982. Secondary ion mass spectrometry with cesium ion primary beam and liquid target matrix for analysis of bioorganic compounds. Anal. Chem. 54: 2029–2034.

    Article  CAS  Google Scholar 

  30. Jabusch, J.R., Farb, D.L., Kerschensteiner, D.A., and Deutsch, H. 1980. Some sulfhydryl properties & primary structure of human erythrocyte superoxide dismutase. Biochemistry 19: 2310–2316.

    Article  CAS  PubMed  Google Scholar 

  31. Brown, J.L. and Roberts, W.K. 1976. Evidence that approximately eighty per cent of the soluble proteins from Ehrlich ascites cells are Nα-acetylated. J. Biol. Chem. 251: 1009–1014.

    CAS  PubMed  Google Scholar 

  32. Brown, J.L. 1979. A comparison of the turnover of α-N-acetylated and nonacetylated mouse L-cell proteins. J. Biol. Chem. 254: 1447–1449.

    CAS  PubMed  Google Scholar 

  33. Dayhoff, M.O. 1978. Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring, MA.

    Google Scholar 

  34. Tsunasawa, S., Stewart, J.W., and Sherman, F. 1985. Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. J. Biol. Chem. 260: 5382–5391.

    CAS  PubMed  Google Scholar 

  35. Wold, F. 1984. Acetylated N-terminals in proteins-a perennial enigma. Trends Biochem. Sci. 9: 256–257.

    Article  CAS  Google Scholar 

  36. Hartz, J.W. and Deutsch, H.F. 1972. Subunit structure of human superoxide dismutase. J. Biol. Chem. 247: 7043–7052.

    CAS  PubMed  Google Scholar 

  37. Heinrikson, R.L., Krueger, E.T., and Keim, P.S. 1977. Amino acid sequence of phospholipase A2-α from the venom of Crotalus adamanteus. J. Biol. Chem. 252: 4913–4921.

    CAS  PubMed  Google Scholar 

  38. Böhlen, P., Stein, S., Stone, J., and Udenfriend, S. 1975. Automatic monitoring of primary amines in preparative column effluents with fluorescamine. Anal. Biochem. 67: 438–445.

    Article  PubMed  Google Scholar 

  39. Bidlingmeyer, B.A., Cohen, S.A., and Tawin, T.L. 1984. Rapid analysis of amino acids using pre-column derivitization. J. Chromatography 336: 93–104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallewell, R., Mills, R., Tekamp-Olson, P. et al. Amino Terminal Acetylation of Authentic Human Cu,Zn Superoxide Dismutase Produced in Yeast. Nat Biotechnol 5, 363–366 (1987). https://doi.org/10.1038/nbt0487-363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0487-363

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing