Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Effect of Culture Conditions on IgM Antibody Structure, Pharmacokinetics and Activity

Abstract

Culture conditions affect the binding activity, charge heterogeneity, conformational stability, glycosylation, and pharmacokinetics of human monoclonal IgM HMAB-10058. The 10058 human/human/murine trioma was grown in serum-free airlift suspension culture, hollow fiber perfusion culture, or in nude mouse ascites. The ascites-produced antibody showed reduced conformational stability, greater charge and glycoform heterogeneity, and a lower average degree of sialylation than the in vitro culture-produced material. Mean residence time after IV injection in rats was approximately 80-fold greater for the ascites culture-produced material, but specific binding activity was less than 5% of that for the airlift-produced material. In vitro culture in serum-supplemented media (in a hollow fiber perfusion reactor or in shake-flasks) resulted in antibody with pharmacokinetics intermediate between the serum-free airlift and ascites-produced materials. Incubation of airlift-produced antibody in ascites fluid also resulted in material with intermediate pharmacokinetics. Conclusions regarding the effect of culture conditions on antibody product cannot be generalized, as in vitro-produced antibody derived from two related cell lines (HMAB-10233 and HMAB-10390) had long mean residence times similar to that of ascites-produced HMAB-10058.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gauny, S.S., Andya, J., Thomson, J., Young, J.D. and Winkelhake, J.L. 1991. Effect of production method on the systemic clearance rate of a human monoclonal antibody in the rat. Hum. Antibod. Hybridomas 2: 33–38.

    Article  CAS  Google Scholar 

  2. Davis, A.C. and Shulman, M.J. 1989. IgM—Molecular requirements for its assembly and function. Immunology Today 10: 118–128.

    Article  CAS  Google Scholar 

  3. Muraoka, S. and Shulman, J. 1989. Structural requirements for IgM assembly and cytolytic activity. 1989. J. Immunology 142: 695–701.

    CAS  Google Scholar 

  4. Shimizu, A., Putnam, F.W., Paul, C., Clamp, J.R. and Johnson, I. 1971. Structure and role of the five glycopeptides of human IgM immunoglobulins. Nature 231: 73–76.

    CAS  Google Scholar 

  5. Krotkiewski, H., Nilsson, B. and Svensson, S. 1989. Structural analysis of the carbohydrate chains of a mouse monoclonal IgM antibody. Eur. J. Biochem. 184: 29–38.

    Article  CAS  Google Scholar 

  6. Goochee, C.F. and Monica, T. 1990. Environmental effects on protein glycosylation. Bio/Technology 8: 421–427.

    CAS  Google Scholar 

  7. Wold, F. 1981. In vivo chemical modification of proteins (post-translational modification). Ann. Rev. Biochem. 50: 783–814.

    Article  CAS  Google Scholar 

  8. Manning, M.C., Patel, K. and Borchardt, R.T. 1989. Stability of protein Pharmaceuticals. Pharmaceutical Res. 6: 903–918.

    Article  CAS  Google Scholar 

  9. Thall, A. and Galili, U. 1990. Distribution of gal α-(1,3) β-(1,4) glcNAc residues on secreted mammalian glycoproteins. Biochemistry 29: 3959–3965.

    Article  CAS  Google Scholar 

  10. Anderson, D.R., Atkinson, P.H. and Grimes, W.J. 1985. Major carbohydrate structures at five glycosylation sites on murine IgM determined by high resolution H-NMR spectroscopy. Arch. Biochem. Biophys. 243: 605–618.

    Article  CAS  Google Scholar 

  11. Megaw, J.M. and Johnson, L.D. 1979. Glycoprotein synthesized by cultured cells: effects of serum concentrations and buffers on sugar content. Proc. Soc. Exp. Biol. and Med. 161: 60–65.

    Article  CAS  Google Scholar 

  12. Moellering, B.J., Tedesco, J.L., Townsend, R.R., Hardy, M.R., Scott, R.W. and Prior, C.P. 1990. Electrophoretic differences in a MAb expressed in three media. BioPharm 3: 30–38.

    Google Scholar 

  13. Rao, P., Williams, A., Baldwin-Ferro, A., Hanigan, E., Kroon, D., Makowski, M., Meyer, E., Numsuwan, V., Rubin, E. and Tran, A. 1991. C-terminal modification occurs in tissue culture produced OKT3. BioPharm 4: 38–43.

    CAS  Google Scholar 

  14. Wallick, S.C., Kabat, E.A. and Morrison, S.L. 1988. Glycosylation of a VH residue of a monoclonal antibody against α(1-6) dextran increases its affinity for antigen. J. Exp. Med. 168: 1099–1109.

    Article  CAS  Google Scholar 

  15. Winkelhake, J.L. and Chang, R.J. 1979. Structural determinants for the circulating lifetime of antibodies and immune complexes, p. 153. In: Protides of the Biological Fluids. H. Peeters (Ed.). Pergamon Press, New York.

    Google Scholar 

  16. Cohen, G.L. and Mannik, M. 1966. Catabolism of G-globulin with reduced interchain disulfide bonds in rabbits. J. Immunol. 96: 683–690.

    CAS  PubMed  Google Scholar 

  17. Ashwell, G. and Morell, A.G. 1974. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. 41: 99–128.

    CAS  PubMed  Google Scholar 

  18. Ashwell, G. and Harford, J. 1982. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51: 531–554.

    Article  CAS  Google Scholar 

  19. Lehrman, M.A., Pizzo, S.V., Imber, M.J. and Hill, R.L. 1986. The binding of fucose-containing glycoproteins by hepatic lectins. J. Biol. Chem. 261: 7412–7418.

    CAS  PubMed  Google Scholar 

  20. Day, J.F., Thornburg, R.W., Thorpe, S.R. and Baynes, J.W. 1980. Carbohydrate-mediated clearance of antibody antigen complexes from the circulation. J. Biol. Chem. 255: 2360–2365.

    CAS  PubMed  Google Scholar 

  21. Pollack, M., Raubitschek, A.A. and Larrick, J.W. 1987. Human monoclonal antibodies that recognize conserved epitopes in the core-lipid A region of lipopolysaccharides. J. Clin. Invest. 79: 1421–1430.

    Article  CAS  Google Scholar 

  22. Maiorella, B.L., Inlow, D. and Howarth, W. 1989. Method of increasing product expression through solute stress. European patent application WO89/04867.

  23. Howarth, W., Maiorella, B.L. and Inlow, D. 1990. Cell culture medium for enhanced cell growth, culture longevity and product expression. European patent EP 435,911.

  24. Maiorella, B.L., Howarth, B., Shauger, A., Harano, D. and Inlow, D. 1989. Medium design: a new look at “feeding the baby”. Proceedings, cell Culture Engineering II, Engineering Foundation Conferences, New York.

  25. Meldrum, A. 1987. Hollow fibre membrane reactors. The Chemical Engineer 441: 28–30.

    CAS  Google Scholar 

  26. Markwell, M.A. 1982. A new solid-state reagent to iodinate proteins. Anal. Biochem. 125: 427–432.

    Article  CAS  Google Scholar 

  27. Skibba, J.L., McKean, L.P. and Winkelhake, J.L. 1983. Effects of hyperthermia on plasma glycoprotein catabolism by the isolated, perfused rat liver. Compar. Biochem. Physiol. 75A: 391–395.

    Article  CAS  Google Scholar 

  28. Kabat, E.A. and Mayer, M.M. 1961. Experimental Immunochemistry, p. 135–153. Charles C. Thomas Publisher, Springfield, IL.

  29. Grassetti, D.R. and Murray, J.F. Jr. 1967. Determination of sulfhydryl groups with 2,2-or 4,4–dithiodipyridine. Arch. Biochem. Biophys. 119: 41–49.

    Article  CAS  Google Scholar 

  30. Chowdhry, B.Z. and Cole, S.C. 1989. Differential scanning calorimetry: applications in biotechnology. Trends in Biotech. 7: 11–18.

    Article  CAS  Google Scholar 

  31. Ashford, D., Dwek, R.A., Welpy, J.K., Amatayakul, S., Homans, S.W., Lis, H., Taylor, G.N., Sharon, N. and Rademacher, T.W. 1987. The beta (1,2) D-xylose and alpha (1,3) L-fucose substituted N-linked oligosaccharides from Erythina cristagalli lectin. Eur. J. Biochem. 166: 311–320.

    Article  CAS  Google Scholar 

  32. Parekh, R.B., Tse, A.G., Dwek, R.A., Williams, A.F. and Rademacher, T.W. 1987. Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. EMBO J. 6: 1233–1244.

    Article  CAS  Google Scholar 

  33. Parekh, R.B., Dwek, R.A., Thomas, J.R., Opdenakker, G., Rademacher, T.W., Wittwer, A.J., Howard, S.C., Nelson, R., Siegel, N.R. and Jennings, M.G. 1989. Cell-type-specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochemistry 78: 7644–7662.

    Article  Google Scholar 

  34. Chaplin, M.F. 1982. A rapid and sensitive method for the analysis of carbohydrate components in glycoproteins using gas-liquid chromatography. Anal. Biochem. 123: 336–341.

    Article  CAS  Google Scholar 

  35. Ciucanu, I. and Kerek, F. 1984. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131: 209–217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiorella, B., Winkelhake, J., Young, J. et al. Effect of Culture Conditions on IgM Antibody Structure, Pharmacokinetics and Activity. Nat Biotechnol 11, 387–392 (1993). https://doi.org/10.1038/nbt0393-387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0393-387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing