Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluorescent indicators for imaging protein phosphorylation in single living cells

Abstract

To visualize signal transduction based on protein phosphorylation in living cells, we have developed genetically encoded fluorescent indicators, named phocuses. Two different color mutants of green fluorescent protein (GFP) were joined by a tandem fusion domain composed of a substrate domain for the protein kinase of interest, a flexible linker sequence, and a phosphorylation recognition domain that binds with the phosphorylated substrate domain. Intramolecular interaction of the substrate domain and the adjacent phosphorylation recognition domain within a phocus was dependent upon phosphorylation of the substrate domain by protein kinase, which influenced the efficiency of fluorescence resonance energy transfer (FRET) between the GFPs within a phocus. In the present study, we employed phocuses composed of insulin signaling proteins to visualize protein phosphorylation by the insulin receptor. This method may provide a general approach for studying the dynamics of protein phosphorylation–based signal transduction in living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescent indicators for protein phosphorylation in living cells.
Figure 2: Fluorescence imaging of phocus-2nes upon insulin stimulation.
Figure 3: FRET in phocus-2nes.
Figure 4: Dephosphorylation of phocuses.
Figure 5: Fluorescence imaging with phocus-2ppnes. (A) CHO-IR cells expressing phocus-2ppnes were starved with a serum-free medium and stimulated with 100 nM insulin for 20 min at 25°C.
Figure 6: Response of phocuses in a differentiated L6 myotube.
Figure 7: Selectivity of phocus-2ppnes for tyrosine kinase receptors.

Similar content being viewed by others

References

  1. Hunter, T. Signaling—2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  Google Scholar 

  2. Ng, T. et al. Imaging protein kinase Cα activation in cells. Science 283, 2085–2089 (1999).

    Article  CAS  Google Scholar 

  3. Wouters, F.S. & Bastiaens, P.I.H. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells. Curr. Biol. 9, 1127–1130 (1999).

    Article  CAS  Google Scholar 

  4. Verveer, P.J., Wouters, F.S., Reynolds, A.R. & Bastiaens, P.I.H. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000).

    Article  CAS  Google Scholar 

  5. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  6. Miyawaki, A., et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  7. Truong, K., et al. FRET-based in vivo Ca2+ imaging by a new calmodulin– GFP fusion molecule. Nat. Struct. Biol. 8, 1069–1073 (2001).

    Article  CAS  Google Scholar 

  8. Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H. & Iino, M. Spatiotemporal dynamics of inositol 1,4,5-triphosphate that underlies complex Ca2+ mobilization patterns. Science 248, 1527–1530 (1999).

    Article  Google Scholar 

  9. Oancea, E., Teruel, M.N., Quest, A.F.G. & Meyer, T. Green fluorescent protein (GFP)–tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498 (1998).

    Article  CAS  Google Scholar 

  10. Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S. & Tsien, R.Y. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349, 694– 697 (1991).

  11. Zaccolo, M. et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat. Cell Biol. 2, 25–29 (1999).

    Article  Google Scholar 

  12. Sato, M., Hida, N., Ozawa, T. & Umezawa, Y. Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Iα and green fluorescent proteins. Anal. Chem. 72, 5918–5924 (2000).

    Article  CAS  Google Scholar 

  13. Honda, A., et al. Spatiotemporal dynamics of guanosine 3',5′-cyclic monophosphate revealed by genetically encoded, fluorescent indicator. Proc. Natl. Acad. Sci. USA 98, 2437–2442 (2001).

    Article  CAS  Google Scholar 

  14. Zacharias, D.A., Baird, G.S. & Tsien, R.Y. Recent advances in technology for measuring and manipulating cell signals. Curr. Opin. Neurobiol. 10, 416–421 (2000).

    Article  CAS  Google Scholar 

  15. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–849 (1978).

    Article  CAS  Google Scholar 

  16. Selvin, P.R. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7, 730–734 (2000).

    Article  CAS  Google Scholar 

  17. Sawyer, T.K. Src homology-2 domains: structure, mechanisms, and drug discovery. Biopolymers 47, 243–261 (1998).

    Article  CAS  Google Scholar 

  18. Eck, M.J., Paganon, S.D., Trub, T., Nolte, R.T. & Shoelson, S.E. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85, 695–705 (1996).

    Article  CAS  Google Scholar 

  19. Lu, P.J., Zhou, X.Z., Shen, M. & Lu, K.P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  20. Bird, R.E. et al. Single-chain antigen-binding proteins. Science 252, 423–426 (1988).

    Article  Google Scholar 

  21. Casey, J.L., Coley, A.M., Tilley, L.M. & Foley, M. Green fluorescent antibodies: novel in vitro tools. Protein Engineering 13, 445–452 (2000).

    Article  CAS  Google Scholar 

  22. McIlroy, B.K., Walters, J.D. & Johnson, J.D. A continuous fluorescence assay for protein kinase C. Anal. Biochem. 195, 148–152 (1991).

    Article  CAS  Google Scholar 

  23. Higashi, H. et al. Imaging of Ca2+/calmodulin-dependent protein kinase II activity in hippocampal neurones. NeuroReport 7, 2695–2700 (1996).

    Article  CAS  Google Scholar 

  24. Higashi, H. et al. Imaging of cAMP-dependent protein kinase activity in living neural cells using a novel fluorescent substrate. FEBS Lett. 414, 55–60 (1997).

    Article  CAS  Google Scholar 

  25. Nagai, Y. et al. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat. Biotechnol. 18, 313–316 (2000).

    Article  CAS  Google Scholar 

  26. Sun, X.J., Crimmins, D.L., Myers, M.G. Jr., Miralpeix, M. & White, M.F. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol. Cell Biol. 13, 7418–7428 (1993).

    Article  CAS  Google Scholar 

  27. Yonezawa, K. et al. Insulin-dependent formation of a complex containing an 85-kDa subunit of phosphatidylinositol 3-kinase and tyrosine-phosphorylated insulin receptor substrate 1. J. Biol. Chem. 267, 25958–25966 (1992).

    CAS  PubMed  Google Scholar 

  28. Hubbard, S.R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5573–5581 (1997).

    Article  Google Scholar 

  29. Nikolic, T.R., Horn, D.J.V., Chen, D., White, M.F. & Backer, J.M. Regulation of phosphatidylinositol 3-kinase by tyrosyl phosphoproteins. J. Biol. Chem. 270, 3662–3666 (1995).

    Article  Google Scholar 

  30. White, M.F., Maron, R. & Kahn, C.R. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318, 183–186 (1985).

    Article  CAS  Google Scholar 

  31. Zhang, B. et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284, 974–977 (1999).

    Article  CAS  Google Scholar 

  32. Wood, H.B. et al. The basal SAR of a novel insulin receptor activator. Bioorg. Medicinal Chem. Lett. 10, 1189–1192 (2000).

    Article  CAS  Google Scholar 

  33. White, M.F. The insulin signaling system and the IRS proteins. Diabetologia 40, S2–S17 (1997).

    Article  CAS  Google Scholar 

  34. Paganon, S.D., Ottinger, E.D., Nolte, R.T., Eck, M.J. & Shoelson, S.E. Crystal structure of the pleckstrin homology-phosphotyrosine binding (PH-PTB) targeting region of insulin receptor substrate 1. Proc. Natl. Acad. Sci. USA 96, 8378–8383 (1999).

    Article  Google Scholar 

  35. Myers, M.G. et al. The pleckstrin homology domain in insulin receptor substrate-1 sensitizes insulin signaling. J. Biol. Chem. 270, 11715–11718 (1995).

    Article  CAS  Google Scholar 

  36. Yenush, L. et al. The pleckstrin homology domain is the principle link between the insulin receptor and IRS-1. J. Biol. Chem. 271, 24300–24306 (1996).

    Article  CAS  Google Scholar 

  37. Wolf, G. et al. PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J. Biol. Chem. 270, 27407–27410 (1995).

    Article  CAS  Google Scholar 

  38. Songyang, Z. et al. Catalytic specificity of protein tyrosine kinases is critical for selective signaling. Nature 373, 536–539 (1995).

    Article  CAS  Google Scholar 

  39. Songyang, Z. & Cantley, L.C. Recognition and specificity in protein tyrosine kinase-mediated signaling. Trends Biol. Sci. 20, 470–475 (1995).

    Article  CAS  Google Scholar 

  40. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  Google Scholar 

  41. Zlokarnik, G. et al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science 279, 84–88 (1998).

    Article  CAS  Google Scholar 

  42. Mere, L. et al. Miniaturized FRET assays and microfluidics: key components for ultra-high-throughput screening. Drug Discovery Today 4, 363–369 (1999).

    Article  CAS  Google Scholar 

  43. Sato, M., Ozawa, T., Yoshida, T. & Umezawa, Y. A fluorescent indicator for tyrosine phosphorylation-based insulin signaling pathways. Anal. Chem. 71, 3948–3954 (1999).

    Article  CAS  Google Scholar 

  44. Zhang, J., Ma, Y., Taylor, S.S. & Tsien, R.Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl. Acad. Sci. USA 98, 14997–15002 (2001).

    Article  CAS  Google Scholar 

  45. Ting, A.Y., Kain, K.H., Klemke, R.L. & Tsien, R.Y. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. USA 98, 15003–15008 (2001).

    Article  CAS  Google Scholar 

  46. Ullman, K.S., Powers, M.A. & Forbes, D.J. Nuclear export receptors: from importin to exportin. Cell 90, 967–970 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by CREST (Core Research for Evolutional Science and Technology) of JST (Japan Science and Technology) and grants to Y.U. from the Ministry of Education, Science and Culture, Japan. We thank Prof. Y. Ebina for providing CHO-EGFR and CHO-PDGFR cell. We thank Y. Imai for her experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Umezawa.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Ozawa, T., Inukai, K. et al. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat Biotechnol 20, 287–294 (2002). https://doi.org/10.1038/nbt0302-287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0302-287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing