Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

An ethanol inducible gene switch for plants used to manipulate carbon metabolism

Abstract

Many transgenic plant studies use constitutive promoters to express transgenes. For certain genes, deleterious effects arise from constant expression in all tissues throughout development. We describe a chemically inducible plant gene expression system, with negligible background activity, that obviates this problem. We demonstrate its potential by showing inducible manipulation of carbon metabolism in transgenic plants. Upon rapid induction of yeast cytosolic invertase, a marked phenotype appears in developing leaves that is absent from leaves that developed before induction or after it has ceased.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Odell, J.T., Nagy, F., and Chua, N-H. 1985. Identification of DMA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812.

    Article  CAS  Google Scholar 

  2. Kuhlemeier, C, Green, P.J., and Chua, N.H. 1987. Regulation of gene expression in higher plants. Ann. Rev. Plant Physiol. Plant Molec. Biol. 38: 221–257.

    Article  CAS  Google Scholar 

  3. Stitt, M., and Sonnewald, U. 1995. Regulation of metabolism in transgenic plants. Annu. Rev. Plant Physiol. Plant Molec. Biol. 46: 341–368.

    Article  CAS  Google Scholar 

  4. Kascer, H., and Porteous, J. 1987. Control of metabolism, what do we have to measure? Trends Biochem. Sci. 12: 5–14.

    Article  Google Scholar 

  5. Sonnewald, U., Brauer, M., von Schaewen, A., Stitt, M., and Willmitzer, L. 1991. Transgenic tobacco plants expressing yeast derived invertase in either the cytosol, vacuole, or apoplast: a powerful tool to study sucrose metabolism and sink/source interactions. Plant J. 1: 95–106.

    Article  CAS  Google Scholar 

  6. Bussis, D., Heineke, D., Sonnewald, U., Raschke, K., and Heldt, H-W. 1997. Solute accumulation and decreased photosynthesis in leaves of potato plants expressing yeast derived invertase either in the apoplast, vacuole or cytosol. Plants 202: 126–136.

    Article  CAS  Google Scholar 

  7. Gatz, C. 1996. Chemically inducible promoters in transgenic plants. Curr. Opin. Biotechnol. 7: 168–172.

    Article  CAS  Google Scholar 

  8. Mett, V., Lochhead, L.P., and Reynolds, P.H.S. 1993. Copper-controllable gene expression system for whole plants. Proc. Natl. Acad. Sci. USA 90: 4567–4571.

    Article  CAS  Google Scholar 

  9. Aoyama, T., and Chua, N-H. 1997. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11: 605–612.

    Article  CAS  Google Scholar 

  10. Felenbok, B. 1991. The ethanol utilisation regulon of Aspergillus nidulans: the alcA-alcR system as a tool for expression of recombinant proteins. J. Biotechnol. 17: 11–18.

    Article  CAS  Google Scholar 

  11. Fillinger, S. and Felenbok, B. 1996. A newly identified gene cluster in Aspergillus nidulans comprises five novel genes localised in the ale region that are controlled both by the specific transact!vator AlcR and the general carbon catabolite represser CreA. Mol. Microbiol. 20: 475–488.

    Article  CAS  Google Scholar 

  12. Kulmberg, P., Judewicz, N., Mathieu, M., Lenouvel, F., Sequeval, D., and Felenbok, B. 1992. Specific binding sites for the activator protein, AlcR, in the alcA promoter of the ethanol regulon of Aspergillus nidulans. J. Biol. Chem. 267: 21146–21153.

    Google Scholar 

  13. Kulmberg, P., Prange, T., Mathieu, M., Sequeval, D., Scazzocchio, C., and Felenbok, B. 1991. Correct intron splicing generates a new type of putative zinc-binding domain in a transcriptional activator of A. nidulans. FEBS Lett. 280: 11–16.

    Article  Google Scholar 

  14. Hilson, P., Defroidment, D., Lejour, C., Hirai, S.I., Jacquemin, J.M., and Yaniv, M. 1990. Fos and Jun oncogenes transactivate chimeric or native promoters containing AP1/GCN4 binding sites in plant cells. Plant Cell 2: 651–658.

    Article  CAS  Google Scholar 

  15. Schena, M., Lloyd, A.M., Davis, R.W. 1991. A steroid inducible gene expression system for plant cells. Proc. Natl. Acad. Sci. USA 88: 10421–10425.

    Article  CAS  Google Scholar 

  16. Higuchi, R. 1990. Recombinant PCR, pp. 177–183 in PCR protocols. Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (eds.), Academic Press, San Diego.

    Google Scholar 

  17. Ballance, D.J. and Turner, G. 1985. Development of a high frequency transforming vector for Aspergillus nidulans. Gene 36: 321–331.

    CAS  PubMed  Google Scholar 

  18. Callis, J., Fromm, M., and Walbot, V. 1987. Introns increase expression in cultured maize cells. Genes Dev. 1: 1183–1200.

    Article  CAS  Google Scholar 

  19. Rosahl, S., Schell, J., and Willmitzer, L. 1987. Expression of a tuber-specific storage protein in transgenic tobacco plants: demonstration of an esterase activity. EMBOJ. 6: 1155–1159.

    Article  CAS  Google Scholar 

  20. Komari, T. 1989. Transformation of callus cultures of nine species mediated by Agrobacterium tumefaciens. Plant Science 60: 223–229.

    Article  CAS  Google Scholar 

  21. Schreiber, U., Bilger, W., and Neubauer, C. 1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. pp. 49–70in Ecophysiology of Photosynthesis, Volume 100. Schulze, E.D. and Caldwell, M.M. (eds.). Springer Verlag, Berlin.

    Google Scholar 

  22. Smith, C.J.S., Watson, C.F., Ray, J., Bird, C.R., Morris, P.C., Schuch, W., and Grierson, D. 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724–726.

    Article  CAS  Google Scholar 

  23. Bullock, W.O., Fernandez, J.M., and Short, J.M. 1987. XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques 5: 376–378.

    CAS  Google Scholar 

  24. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  25. Lerchl, J., Geigenberger, P., Stitt, M., and Sonnewald, U. 1995. Impaired photoas-similate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific yeast derived invertase in transgenic plants. Plant Cell 7: 259–270.

    Article  CAS  Google Scholar 

  26. Deblaere, R., Bytebier, B., de Greve, H., Debroek, F., Schell, J., van Montagu, M., and Leemans, J. 1985. Efficient octopine Ti plasmid derived vectors of Agrobacterium mediated gene transfer to plants. Nucl. Acids Res. 13: 4777–4788.

    Article  CAS  Google Scholar 

  27. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioas-says with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  28. Ashraf, M., McNeilly, T., and Bradshaw, D. 1986. The potential for evolution of salt tolerance in 7 grass species. New Phytol. 103: 299–309.

    Article  CAS  Google Scholar 

  29. Bradford, M.M. 1976. A rapid and sensitive method for quantification of micro-gram quantities of protein using the principle of protein dye binding. Anal. Biochem. 72: 243–254.

    Article  Google Scholar 

  30. Stitt, M., Lilley, R.M.C., Gerhardt, R., and Heldt, H.W. 1989. Determination of metabolite levels in specific cells and subcellular compartments of plant leaves. Methods Enzymol. 174: 518–552.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caddick, M., Greenland, A., Jepson, l. et al. An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol 16, 177–180 (1998). https://doi.org/10.1038/nbt0298-177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0298-177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing