Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

A Thioredoxin Gene Fusion Expression System That Circumvents Inclusion Body Formation in the E. coli Cytoplasm

Abstract

We have developed a versatile Escherichia coli expression system based on the use of E. coli thioredoxin (trxA) as a gene fusion partner. The broad utility of the system is illustrated by the production of a variety of mammalian cytokines and growth factors as thioredoxin fusion proteins. Although many of these cytokines previously have been produced in E. coli as insoluble aggregates or “inclusion bodies”, we show here that as thioredoxin fusions they can be made in soluble forms that are biologically active. In general we find that linkage to thioredoxin dramatically increases the solubility of heterologous proteins synthesized in the E. coli cytoplasm, and that thioredoxin fusion proteins usually accumulate to high levels. Two additional properties of E. coli thioredoxin, its ability to be specifically released from the E. coli cytoplasm by osmotic shock or freeze/thaw treatments and its intrinsic thermal stability, are retained by some fusions and provide convenient purification steps. We also find that the active-site loop of E. coli thioredoxin can be used as a general site for small peptide insertions, allowing for the high level production of soluble peptides in the E. coli cytoplasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stormo, G.D., Schneider, T.D. and Gold, L. 1982. Characterization of translation initiation sites in E. coli. Nucl. Acids Res. 10: 2971–2996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gottesman, S. 1989. Genetics of proteolysis in Escherichia coli. Annu. Rev. Genet. 23: 163–198.

    Article  CAS  PubMed  Google Scholar 

  3. Schein, C.H. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1149.

    CAS  Google Scholar 

  4. Mitraki, A. and King, J. 1989. Protein folding intermediates and inclusion body formation. Bio/Technology 7: 690–697.

    CAS  Google Scholar 

  5. Carter, P., Kelley, R.F., Rodrigues, M.L., Snedecor, B., Covarrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. and Henner, D. 1992. High level Escherichia coli expression and production of a bivalent humanized antibody fragment. Bio/Technology 10: 163–167.

    CAS  Google Scholar 

  6. Stader, J.A. and Silhavy, T.J. 1990. Engineering Escherichia coli to secrete heterologous gene products. Methods in Enzymol. 165: 166–187.

    Article  Google Scholar 

  7. Georgiou, G., Telford, J.N., Shuler, M.L. and Wilson, D.B. 1986. Localization of inclusion bodies in Escherichia coli overproducing β-lactamase or alkaline phosphatase. Appl. Environ. Microbiol. 52: 1157–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bowden, G.A. and Giorgiou, G. 1990. Folding and aggregation of β-lactamase in the periplasmic space of Esherichia coli. J. Biol. Chem. 265: 16760–16766.

    CAS  PubMed  Google Scholar 

  9. Ruther, U. and Muller-Hill, B. 1983. Easy identification of cDNA clones. EMBO J. 2: 1791–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yansura, D.G. 1990. Expression as trpE fusion. Methods in Enzymol. 165: 161–166.

    Article  Google Scholar 

  11. Nilsson, B., Abrahmsen, L. and Uhlen, M. 1985. Immobilization and purification of enzymes with staphylococcal protein A gene fusion vectors. EMBO J. 4: 1075–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, D.B. and Johnson, K.S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione-S-transferase. Gene 67: 31–40.

    Article  CAS  PubMed  Google Scholar 

  13. Maina, C.V., Riggs, P.D., Grandea, A.G., Slatko, B.E., Moran, L.S., Tagliamonte, J.A., McReynolds, L.A. and di Guan, C. 1988. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 74: 365–373.

    Article  CAS  PubMed  Google Scholar 

  14. Holmgren, A. 1985. Thioredoxin. Ann. Rev. Biochem. 54: 237–271.

    Article  CAS  PubMed  Google Scholar 

  15. Lunn, C.A., Kathju, S., Wallace, B.J., Kushner, S.R. and Pigiet, V. 1984. Amplification and purification of plasmid-encoded thioredoxin from Escherichia coli K12. J. Biol. Chem. 259: 10469–10474.

    CAS  PubMed  Google Scholar 

  16. Katti, S.K., LeMaster, D.M. and Eklund, H. 1990. Crystal structure of thioredoxin from Escherichia coli at 1.68 angstroms resolution. J. Mol. Biol. 212: 167–184.

    Article  CAS  PubMed  Google Scholar 

  17. Bayer, M.E. 1968. Areas of adhesion between wall and membrane of Escherichia coli. J. Gen. Microbiol. 53: 395–404.

    Article  CAS  PubMed  Google Scholar 

  18. Lunn, C.A. and Pigiet, V.P. 1982. Localization of thioredoxin from Escherichia coli in an cosmotically sensitive compartment. J. Biol. Chem. 257: 11424–11430.

    CAS  PubMed  Google Scholar 

  19. Tsuji, T., Nakagawa, R., Sugimoto, N. and Fukuhara, K.-I. 1987. Characterization of disulfide bonds in recombinant proteins: reduced human interleukin 2 in inclusion bodies and its oxidative refolding. Biochemistry 26: 3129–3134.

    Article  CAS  PubMed  Google Scholar 

  20. Donahue, R.E., Seehra, J., Metzger, M., Lefebvre, D., Rock, B., Carbone, S., Nathan, D.G., Garnick, M., Sehgal, P.K., Laston, D., LaVallie, E., McCoy, J., Schendel, P., Norton, C., Turner, K., Yang, Y.-C. and Clark, S.C. 1988. Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241: 1820–1823.

    Article  CAS  PubMed  Google Scholar 

  21. van Kimmenade, A., Bond, M.W., Schumacher, J.H., Laquoi, C. and Kastelein, R. A. 1988. Expression, renaturation and purification of recombinant human interleukin 4 from Escherichia coli. Eur. J. Biochem. 173: 109–114.

    Article  CAS  PubMed  Google Scholar 

  22. Arcone, R., Pucci, P., Zapacosta, F., Fontaine, V., Malorni, A., Marino, G. and Ciliberto, G. 1991. Single-step purification and structural characterization of human interleukin-6 produced in Escherichia coli from a T7 RNA polymerase expression vector. Eur. J. Biochem. 198: 541–547.

    Article  CAS  PubMed  Google Scholar 

  23. Martin, F.H., Suggs, S.V., Langley, K.E., Lu, H.S. et al. 1990. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell 63: 203–211.

    Article  CAS  PubMed  Google Scholar 

  24. Halenbeck, R., Kawasaki, E., Wrin, J. and Koths, K. 1989. Renaturation and purification of biologically active recombinant human macrophage colony-stimulating factor expressed in E. coli. Bio/Technology 7: 710–715.

    CAS  Google Scholar 

  25. Hansson, H.-A., Holmgren, A., Rozell, B. and Stemme, S. 1986. Localization of thioredoxin, thioredoxin reductase and ribonucleotide reductase in cells: immunohistochemical aspects, p. 177–187. In: Thioredoxin and Glutaredoxin Systems: Structure and Function. Holmgren, A., Branden, C.-I., Jornvall, H., and Sjoberg, B.-M.(Eds.). Raven Press, New York.

    Google Scholar 

  26. Maroux, S., Baratti, J. and Desnuelle, P. 1971. Purification and specificity of porcine enterokinase. J. Biol. Chem. 246: 5031–5039.

    CAS  PubMed  Google Scholar 

  27. Paul, S.R., Bennett, F., Calvetti, J.A., Kelleher, K., Wood, C.R., O'Hara, R.M., Leary, A.C., Sibley, B., Clark, S.C., Williams, D.A. and Yang, Y.-C. 1990. Molecular cloning of a cDNA encoding interleukin II, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc. Natl. Acad. Sci. USA 87: 7512–7516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scott, J.K. and Smith, G.P. 1990. Searching for peptide ligands with an epitope library. Science 249: 386–390.

    Article  CAS  PubMed  Google Scholar 

  29. Edman, J.C., Ellis, L., Blacher, R.W., Roth, R.A. and Rutter, W.J. 1985. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317: 267–270.

    Article  CAS  PubMed  Google Scholar 

  30. Bennett, C.F., Balcarek, J.M., Varrichio, A. and Crooke, S.T. 1988. Molecular cloning and complete amino-acid sequence of form-I phosphoinositide-specific phospholipase C. Nature 334: 268–270.

    Article  CAS  PubMed  Google Scholar 

  31. Mazzarella, R.A., Srinivasan, M., Haugejorden, S.M. and Green, M. 1990. ERp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J. Biol. Chem. 265: 1094–1101.

    CAS  PubMed  Google Scholar 

  32. McCoy, J.M. 1992. Heat-shock proteins and their potential uses for pharmaceutical protein production in microorganisms. In: Stability of Protein Pharmaceuticals, Part B. Ahern, T. and Manning, M. (Eds.) Plenum Press, New York.

    Google Scholar 

  33. Wetzel, R., Perry, L.J., Baase, W.A. and Becktel, W.J. 1988. Disulfide bonds and thermal stability in T4 lysozyme. Proc. Natl. Acad. Sci. USA 85: 401–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology 6: 291–294.

    CAS  Google Scholar 

  35. Joseph-Liauzum, E., Leplatois, P., Legoux, R., Guerverno, V., Marchese, E. and Ferrara, P. 1990. Human recombinant interleukin-1β isolated from Escherichia coli by simple osmotic shock. Gene 86: 291–295.

    Article  Google Scholar 

  36. Rosenwasser, T.A., Hogquist, K.A., Nothwehr, S.F., Bradford-Goldberg, S., Olins, P.O., Chaplin, D.D. and Gordon, J.I. 1990. Compartmentalization of mammalian proteins produced in Escherichia coli. J. Biol. Chem. 265: 13066–13073.

    CAS  PubMed  Google Scholar 

  37. Uhlen, M. and Moks, T. 1990. Gene fusions for purpose of expression: an introduction. Methods in Enzymol. 185: 129–143.

    Article  CAS  Google Scholar 

  38. Brent, R. and Ptashne, M. 1981. Mechanism of action of the lex A gene product. Proc. Natl. Acad. Sci. USA 78: 4204–4208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning, a Laboratory Manual, second edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  40. Norrander, J., Kempe, T. and Messing, J. 1983. Construction of improved M13 vectors using oligonucleotide-directed mutagenesis. Gene 26: 101–106.

    Article  CAS  PubMed  Google Scholar 

  41. Shimatake, H. and Rosenberg, M. 1981. Purified λ regulatory protein cII positively activates promoters for lysogenic development. Nature 292: 128–132.

    Article  CAS  Google Scholar 

  42. Woods, S.A., Miles, J.S., Roberts, R.E. and Guest, J.R. 1986. Structural and functional relationships between fumarase and aspartase. Biochem. J. 237: 547–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dorssers, L., Burger, H., Bot, F., Delwel, R., Geurts van Kessel, A., Lowen-berg, B. and Wagemaker, G. 1987. Characterization of a human multilineage-colony-stimulating factor cDNA clone identified by a conserved non-coding sequence in mouse interleukin-3. Gene 55: 115–124.

    Article  CAS  PubMed  Google Scholar 

  44. Zilberstein, A., Ruggieri, R., Korn, J.H. and Revel, M. 1986. Structure and expression of cDNA and genes for human interferon-beta-2, a distinct species inducible by growth-stimulatory cytokines. EMBO J. 5: 2529–2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Obaru, K., Fukuda, M., Maeda, S. and Shimada, K. 1986. A cDNA clone used to study mRNA inducible in human tonsil lar lymphocytes by a tumor promoter. J. Biochem. 99: 885–894.

    Article  CAS  PubMed  Google Scholar 

  46. Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M. and Wang, E.A. 1988. Novel regulators of bone formation: molecular clones and activities. Science 242: 1528–1534.

    Article  CAS  PubMed  Google Scholar 

  47. Wong, G.G., Temple, P.A., Leary, A.C., Witek-Giannotti, J.S. et al. 1987 Human CSF-1: molecular cloning and expression of 4-kb cDNA encoding the urinary protein. Science 235: 1504–1508.

    Article  CAS  PubMed  Google Scholar 

  48. Kashima, N., Nishi-Takaoka, C., Fujita, T., Taki, S., Yamada, G., Hamuro, J. and Taniguchi, T. 1985. Unique structure of murine interleukin-2 as deduced from cloned cDNAs. Nature 313: 402–404.

    Article  CAS  PubMed  Google Scholar 

  49. Lee, F., Yokota, T., Otsuka, T., Meyerson, P., Villaret, D., Coffman, R., Mosmann, T., Rennick, D., Roehm, N., Smith, C., Zlotnik, A. and Arai, K.-I. 1986. Isolation and characterization of a mouse interleukin cDNA clone that expressed B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities. Proc. Natl. Acad. Sci. USA 83: 2061–2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kinashi, T., Harada, N., Severinson, E., Tanabe, T., Sideras, P., Konishi, M., Azuma, C., Tominaga, A., Bergstedt-Lindqvist, S., Takahashi, M., Matsuda, F., Yaoita, Y., Takatsu, K. and Honjo, T. 1986. Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature 324: 70–73.

    Article  CAS  PubMed  Google Scholar 

  51. Gearing, D.P., Gough, N.M., King, J.A., Hilton, D.J., Nicola, N.A., Simpson, R.J., Nice, E.C., Kelso, A. and Metcalf, D. 1987. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J. 6: 3995–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Anderson, D.M., Lyman, S.D., Baird, A., Wignall, J.M., Eisenman, J., Rauch, C., March, C.J., Boswell, H.S., Gimpel, S.D., Cosman, D. and Williams, D.E. 1990. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 63: 235–243.

    Article  CAS  PubMed  Google Scholar 

  53. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  54. Micschendahl, M., Petri, T. and Hanggi, U. 1986. A novel prophage independent trp regulated lambda pL expression system. Bio/Technology 4: 802–808.

    Google Scholar 

  55. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  56. Schagger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-poly-acrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100kDa. Anal. Biochem. 166: 368–379.

    Article  CAS  PubMed  Google Scholar 

  57. Avanzi, C.G., Brizzi, M.F., Giannotti, J., Ciarletta, A., Yang, Y.C., Pegoraro, L. and Clark, S.C. 1990. M-O7e human leukemic factor-dependent cell line provides a rapid and sensitive bioassay for the human cytokines GM-CSF and IL-3. J. Cellular Physiol. 145: 458–464.

    Article  CAS  Google Scholar 

  58. Thies, R.S., Bauduy, M., Ashton, B.A., Kurtzberg, L., Wozney, J.M. and Rosen, V. 1992. Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology 130: 1318–1324.

    CAS  PubMed  Google Scholar 

  59. Warren, H.S., Hargreaves, J. and Happel, A.J. 1985. Some interleukin-3 dependent mast-cell lines also respond to interleukin-2. Lymphokine Res. 4: 195–204.

    CAS  PubMed  Google Scholar 

  60. Pragnell, I.B., Wright, E.G., Lorimore, S.A., Adam, J., Rosendaal, M., De Lamarter, J.F., Freshney, M., Eckman, L., Sproul, A. and Wilkie, N. 1988. The effect of stem proliferation inhibitors demonstrated with an in vitro assay. Blood 72: 196–199.

    CAS  PubMed  Google Scholar 

  61. Kitamura, T., Tange, T., Chiba, S., Kuwaki, T., Mitani, K., Urabe, A. and Takaku, F. 1989. Establishment and characterization of a unique human cell line that proliferates dependency on GM-CSF, IL-3 or erythropoietin. J. Cellular Physiol. 140: 323–334.

    Article  CAS  Google Scholar 

  62. Kawasaki, E.S., Ladner, M.B., Wang, A.M., Van Arsdell, J., Warren, K., Coyne, M.Y., Schweickart, V.L., Lee, M-.T., Wilson, K.J., Boosman, A., Stanley, E.R., Ralph, P. and Mark, D.F. 1986. Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-I). Science 230: 291–296.

    Article  Google Scholar 

  63. Moreau, J.-F., Donaldson, D.D., Bennett, F., Witek-Giannotti, J., Clark, S.C. and Wong, G.G. 1988. Leukaemia inhibitory factor is identical to the myeloid growth factor human interleukin for DA cells. Nature 336: 690–692.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaVallie, E., DiBlasio, E., Kovacic, S. et al. A Thioredoxin Gene Fusion Expression System That Circumvents Inclusion Body Formation in the E. coli Cytoplasm. Nat Biotechnol 11, 187–193 (1993). https://doi.org/10.1038/nbt0293-187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0293-187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing