Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin

An Erratum to this article was published on 01 May 2000

Abstract

We have developed a strategy for the synthesis of positional-scanning synthetic combinatorial libraries (PS-SCL) that does not depend on the identity of the P1 substituent. To demonstrate the strategy, we synthesized a tetrapeptide positional library in which the P1 amino acid is held constant as a lysine and the P4-P3-P2 positions are positionally randomized. The 6,859 members of the library were synthesized on solid support with an alkane sulfonamide linker, and then displaced from the solid support by condensation with a fluorogenic 7-amino-4-methylcoumarin-derivatized lysine. This library was used to determine the extended substrate specificities of two trypsin-like enzymes, plasmin and thrombin, which are involved in the blood coagulation pathway. The optimal P4 to P2 substrate specificity for plasmin was P4-Lys/Nle (norleucine)/Val/Ile/Phe, P3-Xaa, and P2-Tyr/Phe/Trp. This cleavage sequence has recently been identified in some of plasmin's physiological substrates. The optimal P4 to P2 extended substrate sequence determined for thrombin was P4-Nle/Leu/Ile/Phe/Val, P3-Xaa, and P2-Pro, a sequence found in many of the physiological substrates of thrombin. Single-substrate kinetic analysis of plasmin and thrombin was used to validate the substrate preferences resulting from the PS-SCL. By three-dimensional structural modeling of the substrates into the active sites of plasmin and thrombin, we identified potential determinants of the defined substrate specificity. This method is amenable to the incorporation of diverse substituents at the P1 position for exploring molecular recognition elements in proteolytic enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three sublibraries (P2, P3, P4), each made up of 19 wells containing 361 compounds, are prepared by a segment condensation reaction with a P1 fluorogenic amino acid substrate.
Figure 2: (A) Activity of plasmin in a P1-Lys positional-scanning synthetic combinatorial library.
Figure 3: (A) Three-dimensional model of plasmin bound to the tetrapeptide substrate Lys-Thr-Phe-Lys.
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Matthews, D.J. & Wells, J.A. Substrate phage: selection of protease substrates by monovalent phage display. Science 260 , 1113–1117 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Ding, L. et al. Origins of the specificity of tissue-type plasminogen activator. Proc. Natl. Acad. Sci. USA 92, 7627– 7631 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bevan, A., Brenner, C. & Fuller, R.S. Quantitative assessment of enzyme specificity in vivo: P2 recognition by Kex2 protease defined in a genetic system. Proc. Natl. Acad. Sci.USA 95,10384–10389 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lustig, K.D. et al. Small pool expression screening: identification of genes involved in cell cycle control, apoptosis, and early development. Methods Enzymol. 283, 83–99 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  5. Kothakota, S. et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294– 298 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Petithory, J.R., Masiarz, F.R., Kirsch, J.F., Santi, D.V. & Malcolm, B.A. A rapid method for determination of endoproteinase substrate specificity: specificity of the 3C proteinase from hepatitis A virus. Proc. Natl. Acad. Sci. USA 88, 11510–11514 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Birkett, A.J. et al. Determination of enzyme specificity in a complex mixture of peptide substrates by N-terminal sequence analysis. Anal. Biochem. 196, 137–143 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  8. Berman, J. et al. Rapid optimization of enzyme substrates using defined substrate mixtures. J. Biol. Chem. 267, 1434–1437 (1992).

    CAS  PubMed  Google Scholar 

  9. McGeehan, G.M. et al. Characterization of the peptide substrate specificities of interstitial collagenase and 92-kDa gelatinase. Implications for substrate optimization. J. Biol. Chem. 269, 32814– 32820 (1994).

    CAS  PubMed  Google Scholar 

  10. Schellenberger, V., Turck, C.W., Hedstrom, L. & Rutter, W.J. Mapping the S′ subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles. Biochemistry 32, 4349–4353 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Lam, K.S. & Lebl, M. Synthesis of a one-bead one-compound combinatorial peptide library. Methods Mol. Biol. 87 , 1–6 (1998).

    CAS  PubMed  Google Scholar 

  12. Meldal, M., Svendsen, I., Breddam, K. & Auzanneau, F.I. Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity. Proc. Natl. Acad. Sci.USA 91, 3314–3318 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meldal, M. et al. Inhibition of cruzipain visualized in a fluorescence quenched solid-phase inhibitor library assay. D-amino acid inhibitors for cruzipain, cathepsin B and cathepsin L. J. Peptide Sci. 4, 83 –91 (1998).

    Article  CAS  Google Scholar 

  14. St. Hilaire, P.M., Willert, M., Juliano, M.A., Juliano, L. & Meldal, M. Fluorescence-quenched solid phase combinatorial libraries in the characterization of cysteine protease substrate specificity. J. Combinatorial Chem. VI, 509–523 (1999).

    Article  Google Scholar 

  15. Del Nery, E. et al. Characterization of the substrate specificity of the major cysteine protease (cruzipain) from Trypanosoma cruzi using a portion-mixing combinatorial library and fluorogenic peptides. Biochem. J. 323, 427–433 (1997).

    Article  CAS  Google Scholar 

  16. Dooley, C.T. & Houghten, R.A. Synthesis and screening of positional scanning combinatorial libraries. Methods Mol. Biol. 87, 13–24 (1998).

    CAS  PubMed  Google Scholar 

  17. Pinilla, C., Appel, J.R., Blanc, P. & Houghten, R.A. Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. Biotechniques 13, 901–905 (1992).

    CAS  PubMed  Google Scholar 

  18. Rano, T.A. et al. A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE). Chem.Biol. 4, 149–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Thornberry, N.A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Schechter, I., Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Chem. Commun. 27, 157–162 (1968).

    Article  Google Scholar 

  21. Backes, B.J. & Ellman, J.A. An alkane sulfonamide “safety-catch” linker for solid-phase synthesis. J. Org. Chem. 64, 2322–2330 (1999).

    Article  CAS  Google Scholar 

  22. Ostresh, J.M., Winkle, J.H., Hamashin, V.T. & Houghten, R.A. Peptide libraries: determination of relative reaction rates of protected amino acids in competitive couplings. Biopolymers 34, 1681–1689 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X., Lin, X., Loy, J.A., Tang, J. & Zhang, X.C. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 281, 1662–1665 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Bode, W. et al. The refined 1.9 Å crystal structure of human α-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 8, 3467– 3475 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas, K.A., Smith, G.M., Thomas, T.B. & Feldmann, R.J. Electronic distributions within protein phenylalanine aromatic rings are reflected by the three-dimensional oxygen atom environments. Proc. Natl. Acad. Sci.USA 79, 4843–4847 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burley, S.K. & Petsko, G.A. Amino-aromatic interactions in proteins. FEBS Lett. 203, 139– 143 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Gillmor, S.A., Craik, C.S. & Fletterick, R.J. Structural determinants of specificity in the cysteine protease cruzain. Protein Sci. 6, 1603– 1611 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Omar, M.N. & Mann, K.G. Inactivation of factor Va by plasmin . J. Biol. Chem. 262, 9750– 9755 (1987).

    CAS  PubMed  Google Scholar 

  29. McKee, P.A., Andersen, J.C. & Switzer, M.E. Molecular structural studies of human factor VIII . Ann. NY Acad. Sci. 240, 8– 33 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Gundersen, D., Traan-Thang, C., Sordat, B., Mourali, F. & Reuegg, C. Plasmin-induced proteolysis of tenascin-C: modulation by T lymphocyte-derived urokinase-type plasminogen activator and effect on T lymphocyte adhesion, activation, and cell clustering. J.Immunol. 158, 1051–1060 (1997).

    CAS  PubMed  Google Scholar 

  31. Campbell, P.G. & Andress, D.L. Plasmin degradation of insulin-like growth factor-binding protein-5 (IGFBP-5): regulation by IGFBP-5-(201-218) . Am. J. Physiol. 273, E996– 1004 (1997).

    CAS  PubMed  Google Scholar 

  32. Tsirka, S.E., Bugge, T.H., Degen, J.L. & Strickland, S. Neuronal death in the central nervous system demonstrates a non-fibrin substrate for plasmin (published erratum appears in Proc Natl Acad Sci USA 26, 14976, 1997). Proc. Natl. Acad. Sci. USA 94, 9779–9781 ( 1997).

    Google Scholar 

  33. Pryzdial, E.L., Lavigne, N., Dupuis, N. & Kessler, G.E. Plasmin converts factor X from coagulation zymogen to fibrinolysis cofactor. J. Biol. Chem. 274, 8500–8505 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kuliopulos, A. et al. Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry 38, 4572–4585 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Kost, C., Benner, K., Stockmann, A., Linder, D. & Preissner, K.T. Limited plasmin proteolysis of vitronectin. Characterization of the adhesion protein as morpho-regulatory and angiostatin-binding factor. Eur. J. Biochem. 236 , 682–688 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Chain, D., Kreizman, T., Shapira, H. & Shaltiel, S. Plasmin cleavage of vitronectin. Identification of the site and consequent attenuation in binding plasminogen activator inhibitor-1. FEBS Lett. 285, 251–256 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  37. Novak, J.F., Hayes, J.D. & Nishimoto, S.K. Plasmin-mediated proteolysis of osteocalcin. J.Bone Mineral Res. 12, 1035–1042 (1997).

    Article  CAS  Google Scholar 

  38. Pozsgay, M. et al. Study of the specificity of thrombin with tripeptidyl-p-nitroanilide substrates. Eur. J. Biochem. 115, 491– 495 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. Bode, W., Turk, D. & Karshikov, A. The refined 1.9-Å X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci. 1, 426– 471 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Bonniec, B.F. et al. Characterization of the P2′ and P3′ specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Biochemistry 35, 7114– 7122 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Vindigni, A., Dang, Q.D. & Di Cera, E. Site-specific dissection of substrate recognition by thrombin. Nat. Biotechnol. 15, 891– 895 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Lottenberg, R., Hall, J.A., Blinder, M., Binder, E.P. & Jackson, C.M. The action of thrombin on peptide p-nitroanilide substrates. Substrate selectivity and examination of hydrolysis under different reaction conditions. Biochim. Biophys. Acta 742, 539–557 (1983).

    Article  CAS  PubMed  Google Scholar 

  43. Kawabata, S. et al. Highly sensitive peptide-4-methylcoumaryl-7-amide substrates for blood-clotting proteases and trypsin. Eur. J. Biochem. 172, 17–25 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Mathews, I.I. et al. Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry 33, 3266–3279 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  45. Vu, T.K., Wheaton, V.I., Hung, D.T., Charo, I. & Coughlin, S.R. Domains specifying thrombin-receptor interaction. Nature 353, 674– 677 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Pittman, D.D., Tomkinson, K.N., Michnick, D., Selighsohn, U. & Kaufman, R.J. Posttranslational sulfation of factor V is required for efficient thrombin cleavage and activation and for full procoagulant activity. Biochemistry 33, 6952–6959 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Keller, F.G., Ortel, T.L., Quinn-Allen, M.A. & Kane, W.H. Thrombin-catalyzed activation of recombinant human factor V. Biochemistry 34, 4118–4124 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  48. Stubbs, M.T. & Bode, W. A model for the specificity of fibrinogen cleavage by thrombin. Semin. Thrombosis Hemostasis 19, 344–351 (1993).

    Article  CAS  Google Scholar 

  49. Ehrlich, H.J. et al. Recombinant human protein C derivatives: altered response to calcium resulting in enhanced activation by thrombin. EMBO J. 9, 2367–2373 ( 1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bunin, B.A. The combinatorial index. xvii, 322 (Academic, San Diego; 1998).

  51. Still, W.C., Kahn, M. & Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 43, 2923– 2925 (1978).

    Article  CAS  Google Scholar 

  52. Robbins, K.C., Summaria, L. & Wohl, R.C. Human plasmin. Methods Enzymol. C 80, 379–387 (1981).

    Article  CAS  Google Scholar 

  53. Fenton, J.W.d., Fasco, M.J. & Stackrow, A.B. Human thrombins. Production, evaluation, and properties of alpha-thrombin. J. Biol. Chem. 252, 3587 –3598 (1977).

    CAS  PubMed  Google Scholar 

  54. Jameson, G., Roberts, D.V., Adams, R.W., Kyle, W.S., & Elmore, D.T. Determination of the operational molarity of solutions of bovine alpha-chymotrypsin, trypsin, thrombin and factor Xa by spectrofluorimetric titration. Biochem. J. 131, 107–117 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zimmerman, M., Ashe, B., Yurewicz, E. & Patel, G. Sensitive assay for trypsin, elastase, and chymotrypsin using fluorogenic substrates. Anal. Biochem. 78, 47–51 (1977).

    Article  CAS  PubMed  Google Scholar 

  56. Bernstein, F.C. et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535 ( 1977).

Download references

Acknowledgements

We thank Shaun R. Coughlin and Mark Lipton for insightful discussions. We extend our appreciation to Keith W. Burdick for helpful discussion and assistance with the figures and to Matthew Trammel for assistance with the preparation and analysis of single-substrate kinetics. This work was supported in part by National Science Foundation Grant MCB9604379 and National Institutes of Health Grant CA72006 (to C.S.C.), National Institutes of Health Grant GM 54051 (to J.A.E.) and National Institutes of Health Biotechnology Training Grant Fellowship (to J.L.H.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backes, B., Harris, J., Leonetti, F. et al. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat Biotechnol 18, 187–193 (2000). https://doi.org/10.1038/72642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/72642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing