Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis of vertebrate SCL loci identifies conserved enhancers

Abstract

The SCL gene encodes a highly conserved bHLH transcription factor with a pivotal role in hemopoiesis and vasculogenesis. We have sequenced and analyzed 320 kb of genomic DNA composing the SCL loci from human, mouse, and chicken. Long-range sequence comparisons demonstrated multiple peaks of human/mouse homology, a subset of which corresponded precisely with known SCL enhancers. Comparisons between mammalian and chicken sequences identified some, but not all, SCL enhancers. Moreover, one peak of human/mouse homology (+23 region), which did not correspond to a known enhancer, showed significant homology to an analogous region of the chicken SCL locus. A transgenic Xenopus reporter assay was established and demonstrated that the +23 region contained a new neural enhancer. This combination of long-range comparative sequence analysis with a high-throughput transgenic bioassay provides a powerful strategy for identifying and characterizing developmentally important enhancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of vertebrate SCL loci.
Figure 2: Large-scale alignment of the human and mouse SCL loci.
Figure 3: Conserved noncoding regions identified by comparative sequence analysis.
Figure 4: Murine SCL enhancers direct tissue-specific expression in transgenic frogs.

Similar content being viewed by others

References

  1. Popperl, H. et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031 –1042 (1995).

    Article  CAS  Google Scholar 

  2. Aparicio, S. et al. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl. Acad. Sci. USA 92, 1684–1688 ( 1995).

    Article  CAS  Google Scholar 

  3. Hardison, R.C., Oeltjen, J. & Miller, W. Long human-mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res. 7, 959–966 (1997).

    Article  CAS  Google Scholar 

  4. Rowitch, D.H. et al. Identification of an evolutionary conserved 110 base-pair cis -acting regulatory sequence that governs wnt-1 expression in the murine neural plate. Development 125, 2735– 2746 (1998).

    CAS  PubMed  Google Scholar 

  5. Nonchev, S. et al. The conserved role of Krox-20 in directing Hox gene-expression during vertebrate hindbrain segmentation. Proc Natl. Acad. Sci. USA 93 , 9339–9345 (1996).

    Article  CAS  Google Scholar 

  6. Oeltjen, J.C. et al. Large-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains. Genome Res. 7, 315–329 ( 1997).

    Article  CAS  Google Scholar 

  7. Lamerdin, J.E. et al. Genomic sequence comparison of the human and mouse XRCC1 DNA repair gene regions. Genomics 25, 547– 554 (1995).

    Article  CAS  Google Scholar 

  8. Lamerdin, J.E., Stilwagen, S.A., Ramirez, M.H., Stubbs, L. & Carrano, A.V. Sequence analysis of the ERCC2 gene regions in human, mouse, and hamster reveals three linked genes. Genomics 34, 399–409 ( 1996).

    Article  CAS  Google Scholar 

  9. Epp, T.A., Wang, R., Sole, M.J. & Liew, C.C. Concerted evolution of mammalian cardiac myosin heavy chain genes. J. Mol. Evol. 41, 284–292 (1995).

    Article  CAS  Google Scholar 

  10. Hardison, R. et al. Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights . Gene 205, 73–94 (1997).

    Article  CAS  Google Scholar 

  11. Begley, C.G. & Green, A.R. The SCL gene: from case report to critical hematopoietic regulator. Blood 93, 2760–70 (1999).

    CAS  PubMed  Google Scholar 

  12. Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57 (1996).

    Article  CAS  Google Scholar 

  13. Robb, L. et al. The SCL gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J. 15, 4123– 4129 (1996).

    Article  CAS  Google Scholar 

  14. Visvader, J.E., Fujiwara, Y. & Orkin, S.H. Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev. 12, 473–479 (1998).

    Article  CAS  Google Scholar 

  15. Gering, M., Rodaway, A.R.F., Göttgens, B., Patient, R.K. & Green, A.R. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J. 17, 4029–4045 (1998).

    Article  CAS  Google Scholar 

  16. Drake, C.J., Brandt, S.J., Trusk, T.C. & Little, C.D. TAL1/SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis. Dev. Biol. 192, 17–30 (1997).

    Article  CAS  Google Scholar 

  17. Sinclair, A.M. et al. Distinct 5′ SCL enhancers direct transcription to developing brain, spinal chord and endothelium; conserved neural expression is GATA factor dependent. Dev. Biol. 209, 128– 142 (1999).

    Article  CAS  Google Scholar 

  18. Mead, P.E., Kelley, C.M., Hahn, P.S., Piedad, O. & Zon, L.I. SCL specifies hematopoietic mesoderm in Xenopus embryos . Development 125, 2611– 2620 (1998).

    CAS  PubMed  Google Scholar 

  19. Lecointe, N. et al. GATA- and SP1-binding sites are required for the full activity of the tissue-specific promoter of the tal-1 gene. Oncogene 9, 2623–2632 (1994).

    CAS  PubMed  Google Scholar 

  20. Bockamp, E.-O et al. Lineage-restricted regulation of the murine SCL/TAL-1 promoter. Blood 86, 1502–1514 ( 1995).

    CAS  PubMed  Google Scholar 

  21. Bockamp, E.O. et al. Distinct mechanisms direct SCL/tal-1 expression in erythroid cells and CD34 positive primitive myeloid cells. J. Biol. Chem. 272, 8781–8790 (1997).

    Article  CAS  Google Scholar 

  22. Bockamp, E.O. et al. Transcriptional regulation of the stem cell leukemia gene by PU.1 and Elf-1. J. Biol. Chem. 273, 29032– 29042 (1998).

    Article  CAS  Google Scholar 

  23. Göttgens, B. et al. Transcription of the SCL gene in erythroid and CD34 positive primitive myeloid cells is controlled by a complex network of lineage-restricted chromatin-dependent and chromatin-independent regulatory elements. Oncogene 15, 2419–2428 (1997).

    Article  Google Scholar 

  24. Sanchez, M.J. et al. An SCL 3′ enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors. Development 126, 3891–3904 ( 1999).

    CAS  PubMed  Google Scholar 

  25. Aplan, P.D. et al. The SCL gene is formed from a transcriptionally complex locus. Mol. Cell Biol. 10, 6426–6435 (1990).

    Article  CAS  Google Scholar 

  26. Begley, C.G. et al. Structure of the gene encoding the murine SCL protein. Gene 138, 93–99 ( 1994).

    Article  CAS  Google Scholar 

  27. Morgenstern, B., Frech, K., Dress, A. & Werner, T. DIALIGN: Finding local similarities by multiple sequence alignment. Bioinformatics 14, 290–294 ( 1998).

    Article  CAS  Google Scholar 

  28. Sonnhammer, E.L. & Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, GC1– GC10 (1995).

    Article  CAS  Google Scholar 

  29. Leroy-Viard, K., Vinit, M.-A, Lecointe, N., Mathieu-Mahul, D. & Romeo, P.-H Distinct DNase-I hypersensitive sites are associated with TAL-1 transcription in erythroid and T-cell lines . Blood 84, 3619–3827 (1994).

    Google Scholar 

  30. Xu, G. & Goodridge, A.G. Characterization of a polypyrimidine/polypurine tract in the promoter of the gene for chicken malic enzyme. J. Biol. Chem. 271, 16008–16019 (1996).

    Article  CAS  Google Scholar 

  31. Levitt, N., Briggs, D., Gil, A. & Proudfoot, N.J. Definition of an efficient synthetic poly(A) site. Genes Dev. 3, 1019–1025 (1989).

    Article  CAS  Google Scholar 

  32. Moreira, A., Wollerton, M., Monks, J. & Proudfoot, N.J. Upstream sequence elements enhance poly(A) site efficiency of the C2 complement gene and are phylogenetically conserved. EMBO J. 14, 3809–3819 (1995).

    Article  CAS  Google Scholar 

  33. Moreira, A. et al. The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms. Genes Dev. 12, 2522–2534 (1998).

    Article  CAS  Google Scholar 

  34. Kroll, K.K. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173– 3183 (1996).

    CAS  PubMed  Google Scholar 

  35. Kroll, K.K. & Amaya, E. in Early development of Xenopus laevis . (eds Sive, H.L., Grainger, R.M. & Harland, R.M.) 393– 414, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1998).

    Google Scholar 

  36. Kallianpur, A.R., Jordan, J.E. & Brandt, S.J. The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 83, 1200–1208 ( 1994).

    CAS  PubMed  Google Scholar 

  37. Green, A.R., Visvader, J., Lints, T., Harvey, R. & Begley, C.G. SCL is co-expressed with GATA-1 in haemopoietic cells but is also expressed in developing brain. Oncogene 7, 653–660 (1992).

    CAS  PubMed  Google Scholar 

  38. Duret, L. & Bucher, P. Searching for regulatory elements in human noncoding sequences. Curr. Opin. Struct Biol. 7, 399–406 (1997).

    Article  CAS  Google Scholar 

  39. Wingender, E., Karas, H. & Knuppel, R. TRANSFAC database as a bridge between sequence data libraries and biological function. Pac. Symp. Biocomput. 477–485 (1997).

  40. Kolchanov, N.A. et al. GeneExpress: a computer system for description, analysis, and recognition of regulatory sequences in eukaryotic genome. Intelligent Systems for Molecular Biology 6, 95– 104 (1998).

    CAS  Google Scholar 

  41. Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997).

    CAS  Google Scholar 

  42. Meng, A. et al. Positive and negative cis-acting elements are required for hematopoietic expression of zebrafish GATA-1. Blood 93, 500–508 (1999).

    CAS  PubMed  Google Scholar 

  43. Yuh, C.H. & Davidson, E.H. Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo. Development 122, 1069–1082 (1996).

    CAS  PubMed  Google Scholar 

  44. Kirchhamer, C.V. & Davidson, E.H. Spatial and temporal information processing in the sea urchin embryo: modular and intramodular organization of the CyIIIa gene cis-regulatory system. Development 122, 333–348 (1996).

    CAS  PubMed  Google Scholar 

  45. Arnone, M.I. & Davidson, E.H. The hardwiring of development: organization and function of genomic regulatory systems. Development 124, 1851–1864 ( 1997).

    CAS  PubMed  Google Scholar 

  46. Eeckman, F.H. & Durbin, R. ACeDB and macace. Methods Cell Biol. 48, 583–605 ( 1995).

    Article  CAS  Google Scholar 

  47. Göttgens, B. et al. The pufferfish SLP-1 gene, a new member of the SCL/TAL-1 family of transcription factors. Genomics 48, 52–62 (1998).

    Article  Google Scholar 

  48. Altschul, S.F., Gish, W., Miller, W., Meyers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 ( 1990).

    Article  CAS  Google Scholar 

  49. Quandt, K., Frech, K., Karas, H., Wingender, E. & Werner, T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23, 4878–4884 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by the Wellcome Trust, the Medical Research Council, the Leukaemia Research Fund, and the Kay Kendall Leukaemia Fund. We are grateful to Christine Holt for expert help in characterizing neural expression patterns, Kathy Hartley for the polyGFP3 plasmid, Rima Zoorob for a filter set of the chicken PAC library, and Jonathan Frampton for the HD57 RNA. We have enjoyed stimulating discussions with Doug Higgs, Sam Aparicio, Rob Krumlauf, and Victor Solovyev, and would also like to acknowledge the unstinting support of Jane Rogers and sequencing team 32 at the Sanger Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göttgens, B., Barton, L., Gilbert, J. et al. Analysis of vertebrate SCL loci identifies conserved enhancers . Nat Biotechnol 18, 181–186 (2000). https://doi.org/10.1038/72635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing