Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius

Abstract

A fermentation method that bypasses the low-yielding semisynthesis of epirubicin (4′-epidoxorubicin) and 4′-epidaunorubicin, important cancer chemotherapy drugs, has been developed for Streptomyces peucetius. This bacterium normally produces the anthracycline antibiotics, doxorubicin and daunorubicin; the 4′-epimeric anthracyclines are formed by introducing the heterologous Streptomyces avermitilis avrE or Saccharopolyspora eryBIV genes into an S. peucetius dnmV mutant blocked in the biosynthesis of daunosamine, the deoxysugar component of these antibiotics. Product yields were enhanced considerably by replacing the chromosomal copy of dnmV with avrE and by introducing further mutations that can increase daunorubicin and doxorubicin yields in the wild-type strain. This method demonstrates that valuable hybrid antibiotics can be made by combinatorial biosynthesis with bacterial deoxysugar biosynthesis genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Service, R.F. 1995. Antibiotics that resist resistance. Science 270: 724–727.

    Article  CAS  Google Scholar 

  2. McAlpine, J.B., Tuan, J.S., Brown, D.P., Grebner, K.D., Whittern, D.N., Buko, A., and Katz, L. 1987. New antibiotics from genetically engineerd actinomycetes. I. 2-Norerythromycins, isolation and structural determination. J. Antibiotics 40: 1115–1122.

    Article  CAS  Google Scholar 

  3. Weber, J.M., Leung, J.O., Swanson, S.J., Idler, K.B. and McAlpine, J.B. 1991. An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science 252: 114–117.

    Article  CAS  Google Scholar 

  4. Donadio, S., McAlpine, J.B., Sheldon, P.J., Jackson, M., and Katz, L. 1993. An erythromycin analog produced by reprogramming of polyketide synthesis. Proc.Natl. Acad. Sci. USA 90: 7119–7123.

    Article  CAS  Google Scholar 

  5. Jacobsen, J.R., Hutchinson, C.R., Cane, D.E. and Khosla, C. 1997. Precursor directed biosynthesis of novel erythromycin analogs by an engineered polyketide synthase. Science 277: 367–369.

    Article  CAS  Google Scholar 

  6. Stachless, T., Schneider, A. and Marahiel, M.A. 1995. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269: 69–72.

    Article  Google Scholar 

  7. Epp, J., Huber, M.L.B., Turner, J.R., Goodson, T. and Schoner, B.E. 1989. Production of a hybrid macrolide antibiotics in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene 85: 293–301.

    Article  CAS  Google Scholar 

  8. Hara, O. and Hutchinson, C.R. 1992. A macrolide 3-O-acyltransferase gene from the midecamycin-producing species of Streptomyces mycarofaciens. J. Bacteriol. 174: 5141–5144.

    Article  CAS  Google Scholar 

  9. Arisawa, A., Kawamura, N. Takeda, K., Tsunekawa, H., Okamura, K., and Okamoto, R. 1994. Cloning of the macrolide antibiosynthesis gene acyA which encodes 3-O-acyltransferase, from Streptomyces thermotolerans and its use for direct fermentative production of a hybrid macrolide antibiotic. Appl. Environ. Microbiol. 60: 2657–2660.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hutchinson, C.R. and Ikeda, I. 1995. Polyketide synthase gene manipulation: A structure-function approach in engineering novel antibiotics. Annu. Rev. Microbiol. 49: 201–238.

    Article  CAS  Google Scholar 

  11. Hutchinson, C.R. 1997. Antibiotics from genetically engineered microorganisms, pp. 683–702 in Biotechnology of industrial antibiotics. 2nd ed. Strohl, W.R. (ed.). Marcel Dekker, New York.

    Google Scholar 

  12. Khosla, C. and Zawada, R.J.X. 1996. Generation of polyketide libraries via combinatorial biosynthesis. Trends Biotech. 14: 335–341.

    Article  CAS  Google Scholar 

  13. Arcamone, F., Penco, S., Vigevani, A., Redaelli, S., Franchi, G., Di Marco, A., et al. 1975. Synthesis and antitumor properties of new glycosides of daunomycinone and adriamycinone. J. Med. Chem. 18: 703–707.

    Article  CAS  Google Scholar 

  14. Weiss, R.B. 1992. The anthracyclines: Will we ever find a better doxorubicin?. Semin. Oncol. 19: 670–686.

    CAS  PubMed  Google Scholar 

  15. Suarato, A., Penco, S., and Arcamone, F. 1982. Process for the preparation of 4′-epidaunorubicin, 3′,4′-diepidaunorubicin, their doxorubicin analogs, and intermediates used in said process. US Pat. 4,345,068.

  16. Madduri, K. and Hutchinson, C.R. 1995. Functional characterization and transcriptional analysis of the dnrR, locus that controls daunorubicin biosynthesis in Streptomyces peucetius. J. Bacteriol. 177: 1208–1215.

    Article  CAS  Google Scholar 

  17. Otten, S.L., Liu, X., Ferguson, J. and Hutchinson, C.R. 1995. Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J. Bacteriol. 177: 6688–6692.

    Article  CAS  Google Scholar 

  18. Scotti, C. and Hutchinson, C.R. 1996. Enhanced antibiotic production by manipulation of the Streptomyces peucetius dnrH and dnrT genes involved in doxorubicin (adriamycin) biosynthesis. J. Bacteriol. 178: 7316–7321.

    Article  CAS  Google Scholar 

  19. Otten, S.L., Gallo, M.A., Madduri, K., Liu, X., and Hutchinson, C.R. 1997. Cloning and characterization of the Streptomyces peucetius dnmZUV genes encoding three enzymes required for the biosynthesis of the daunorubicin precursor, thymi-dine diphospho-L-daunosamine. J. Bacteriol. 179: 7316–7321.

    Article  Google Scholar 

  20. Gallo, M.A., Ward, J. and Hutchinson, C.R. 1995. The dnrM gene in Streptomyces peucetius contains a naturally-occuring frameshift mutation that is suppressed by another locus outside of the daunorubicin-production gene cluster. Microbiology 142: 269–275.

    Article  Google Scholar 

  21. Liu, H.-W. and Thorson, J.S. 1994. Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu. Rev. Microbiol. 48: 223–256.

    Article  CAS  Google Scholar 

  22. Katz, L. and Donadio, S. 1995. Macrolides. pp. 385–420 in Genetics and biochemistry of antibiotic production. Vining, L.C. and Stuttard, C. (eds.). Butterworth-Heinemann, Boston.

    Chapter  Google Scholar 

  23. MacNeil, D.J. 1995. Avermectins. pp. 421–442 in Genetics and biochemistry of antibiotic production. Vining, L.C. and Stuttard, C. (eds.). Butterworth-Heinemann, Boston.

    Chapter  Google Scholar 

  24. Summers, R.G., Donadio, S., Staver, M., Wendt-Pienkowski, E., Hutchinson, C. R. and Katz, L. 1997. Characterization of ten genes from the erythromycin gene cluster of Saccharopolyspora erythraea that are involved in L-mycarose and D-desosamine biosynthesis. Microbiology 143: 3251–3262.

    Article  CAS  Google Scholar 

  25. Occi, J.L., Gerwain, K.M., Ruby, C.L., and MacNeil, D.J. 1991. Abstracts of the annual meeting of the society for industrial microbiology, P49. p. 93. Philadelphia, PA.

  26. Jiang, X.-M., Neal, B., Santiago, F., Lee, S.J., Romana, L.K., and Reeves, P.R. 1991. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol.. Microbiol. 5: 695–713.

    Article  CAS  Google Scholar 

  27. Macpherson, D.F., Manning, P.A. and Morona, R. 1994. Characterization of the dTDP-rhamnose biosynthetic genes encoded in the rfb locus of Shigella flexneri. Mol. Microbiol. 11: 281–292.

    Article  CAS  Google Scholar 

  28. Vara, J., Lewandowska-Skarbek, M., Wang, Y.-G., Donadio, S. and Hutchinson, C.R. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthetic pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872–5881.

    Article  CAS  Google Scholar 

  29. Bibb, M.J., White, J., Ward, J.M., and Janssen, G.R. 1994. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol. Microbiol. 14: 533–545.

    Article  CAS  Google Scholar 

  30. Tagliavini, F., McArthur, R.A., Canciani, B., Giaccone, G., Porro, M., Bugiani, M., et al. 1997. Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 276: 1119–1122.

    Article  CAS  Google Scholar 

  31. Dingerdissen, J.J., Sitrin, R.D., DePhillips, P.A., Gionenella, A.J., Grappel, S.F., Mehta, R.J., et al. 1987. Actinoidin A2, a novel glycopeptide: Production, preparative HPLC separation and characterization. J. Antibiotics 40: 165–172.

    Article  CAS  Google Scholar 

  32. Lomovskaya, N., Filippini, S., Fonstein, L., Hutchinson, C.R. and Colombo, A.L. 1997. Process for preparing doxorubicin. US patent applied for.

  33. Inventi-Scolari, A., Breme, U., Colombo, A.L., Hutchinson, C.R., Otten, S., and Scotti, C. 1996. Process for preparing doxorubicin. WO 96/27014, Sept. 6,1996.

  34. Kurihara, K., Ajito, K., Shibahara, S., Ishizuka, T., Hara, O., Araake, M., and Omoto, S. 1996. Cladinose analogoues of sixteen-membered macrolide antibiotics. I. Synthesis of 4-O-alkyl-L-cladinose analogues via glycosylation. J. Antibiotics 49: 582–592.

    Article  CAS  Google Scholar 

  35. Solenberg, P.J., Matsushima, P., Stack, D.R., Wilkie, S.C., Thompson, R.C., and Baltz, R.H. 1997. Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem. Biol. 4: 195–202.

    Article  CAS  Google Scholar 

  36. Yanisch-Perron, C., Vieira, J., and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  Google Scholar 

  37. Sambrook, J., Frisch, E.F. and Maniatis, T. 1989. Molecular cloning. A laboratory manual, Vols. 1 to 3. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  38. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., et al. 1985. Genetic manipulation of Streptomyces: A laboratory manual. The John Innes Foundation, Norwich, UK.

    Google Scholar 

  39. Guilfoile, P.G. and Hutchinson, C.R. 1991. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc. Natl. Acad. Sci. USA 88: 8553–8557.

    Article  CAS  Google Scholar 

  40. Meurer, G. and Hutchinson, C.R. 1995. Functional analysis of putative β-ketoa-cyl:acyl carrier protein synthase and acyltransferase active-site-motifs in a type II polyketide synthase of Streptomyces glaucescens. J. Bacteriol. 177: 477–481.

    Article  CAS  Google Scholar 

  41. Hillemann, D., Puhler, A., and Wohlleben, W. 1991. Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integration vectors. Nucl. Acids Res. 19: 727–731.

    Article  CAS  Google Scholar 

  42. Strohl, W.R. 1992. Compilation and analysis of DNA sequences associated with apparent streptomycetes promoters. Nucl. Acids Res. 20: 961–974.

    Article  CAS  Google Scholar 

  43. Devereux, J., Haeberli, P., and Smithies, O. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12: 387–395.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.Richard Hutchinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madduri, K., Kennedy, J., Rivola, G. et al. Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat Biotechnol 16, 69–74 (1998). https://doi.org/10.1038/nbt0198-69

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0198-69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing