Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

DNA variation and the future of human genetics

Abstract

The use of DNA variants in the mapping of the human genome and in the positional cloning of monogenie disease genes is well established. Determining the genetic bases of the more common “multifactorial” diseases, however, presents a major challenge. The genetics of these diseases are complicated by the interplay between many genes and the environment. These investigations will require large numbers of DNA markers and the technology to screen large populations with these markers. The systematic identification of the common DNA polymorphisms in the human genome coupled with the development of high throughput screening methods should allow ultimately the elucidation of the genetic component of most clinical and nonclinical phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Landsteiner, K., 1900. Kenntnis der antifermentativen, lytischen und agglutinierended Wikungen des Blutserums und der Lymphe. Zbl. Bakt. 27: 357–362.

    Google Scholar 

  2. Yamamoto, R, Clausen, H., White, T., Marken, J., and Hakomori, S. 1990. Molecular genetic basis of the histoblood group ABO system. Nature 345: 229–233.

    Article  CAS  PubMed  Google Scholar 

  3. Smithies, O. 1957. Variations in human serum β-globins Nature 180: 1482–1483

    Article  CAS  PubMed  Google Scholar 

  4. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  CAS  PubMed  Google Scholar 

  5. Jeffreys, A.J. 1979. DNA sequence variants in the G-γ -, Aγ-, δ- and β-globin genes of man. Cell 18: 1–10.

    Article  CAS  PubMed  Google Scholar 

  6. Cooper, D.N., Smith, B.A., Cooke, H.J., Niemann, S., and Schmidtke, J. 1985. An estimate of unique DNA sequence heterozygosity in the human genome. Hum. Genet. 69: 201–205.

    Article  CAS  PubMed  Google Scholar 

  7. Jeffreys, A.J., Wilson, V., and Thein, S.L. 1985. Hypervariable ‘minisatellite’ regions of human DNA. Nature 314: 67–73.

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., et al. 1987. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622.

    Article  CAS  PubMed  Google Scholar 

  9. Weber, J.L. and May, P.E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lander, E.S. and Schork, N.J. 1994. Genetic dissection of complex traits. Science 265: 2037–2048.

    Article  CAS  PubMed  Google Scholar 

  11. Mohr, J. 1954. A. study of linkage in man. Opera ex Domo Biologiae Hereditariae Humanae Universitatis Hafniensis, vol. 33. Munksgaard, Copenhagen.

  12. Botstein, D., White, R.L., Skolnick, M., and Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ott, J. 1991. Analysis of human genetic linkage (Revised Edition). The Johns Hopkins Press, Baltimore, MD.

    Google Scholar 

  14. Penrose, L.S. 1935. The detection of autosomal linkage in data which consists of pairs of brothers and sisters of unspecified parentage. Ann. Eugen. 6: 133–138.

    Article  Google Scholar 

  15. Suarez, B.K., Rice, J., and Reich, T. 1978. The generalized sib pair IBD distribution: its use in the detection of linkage. Ann. Hum. Genet. 42: 87–94.

    Article  CAS  PubMed  Google Scholar 

  16. Risch, N. 1990. Linkage strategies for genetically complex traits :ll. The power of affected relative pairs. Am. J. Hum. Genet. 46: 229–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bishop, D.T. and Williamson, J.A. 1990. The power of identity-by-state methods for linkage analysis. Am. J. Hum. Genet. 46: 254–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, T.D., Litt, M., Kramer, P., Pandolfo, M., Angelini, L., Nardocci, N., et al. 1996. Homozygosity mapping of Hallervorden-Spatz syndrome to chromosome 20p12.3–p13. Nat. Genet. 14: 479–481.

    Article  CAS  PubMed  Google Scholar 

  19. Ellis, N.A., Groden, J., Ye, T.Z., Straughen, J., Lennon, D.J., Ciocci, S., Proytcheva, M. and German, J. 1995. The Blooms-syndrome gene-product is 46, homologous to recQ helicases. Cell 83: 655–666.

    Article  CAS  PubMed  Google Scholar 

  20. Davies, J.L., Kawaguchi, Y., Bennett, S.T., Copeman, J.B., Cordell, H.J., Pritchard, L.E., et al. 1994. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371: 130–136.

    Article  CAS  PubMed  Google Scholar 

  21. Cordell, H.J. and Todd, J.A. 1995. Multifactorial inheritance in type 1 diabetes. Trends Genet. 11: 499–504.

    Article  CAS  PubMed  Google Scholar 

  22. Riordan, J.R., Rommens, J.M., Kerem, B., Alon, N., Rozmahel, R., et al. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  23. Yu, S., Pritchard, M., Kremer, E., Lynch, M., Nancarrow, J., Baker, E., et al. 1991. Fragile X genotype characterized by an unstable region of DNA. Science 252: 1179–1181.

    Article  CAS  PubMed  Google Scholar 

  24. Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., et al. 1991. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65: 905–914.

    Article  CAS  PubMed  Google Scholar 

  25. The Huntington's Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntingtons-disease chromosomes. Cell 72: 971–983.

    Article  Google Scholar 

  26. Weeks, D.E. and Lathrop, G.M. 1995. Polygenic disease: methods for mapping complex disease traits. Trends Genet. 11: 513–519.

    Article  CAS  PubMed  Google Scholar 

  27. Sawcer, S., Jones, H.B., Feakes, R., Gray, J., Smaldon, N., Chataway, J., et al. 1996. A genome screen in multiple-sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat. Genet. 13: 464–468.

    Article  CAS  PubMed  Google Scholar 

  28. Haines, J.L., Ter-Minassian, M., Bazyk, A., Gusella, J.F., Kim, D.J., Terwedow, H., et al. 1996. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. Nat. Genet. 13: 469–471.

    Article  CAS  PubMed  Google Scholar 

  29. Moldin, S.O. 1997.The maddening hunt for madness genes. Nat. Genet. 17: 127–129.

    Article  CAS  PubMed  Google Scholar 

  30. Collins, F.S. 1995. Positional cloning moves from perditional to traditional Nat. Genet. 9: 347–350.

    Article  CAS  PubMed  Google Scholar 

  31. Nelson, D.L. 1995. Positional cloning reaches maturity. Curr. Opin. Genet. Dev. 5: 298–303.

    Article  CAS  PubMed  Google Scholar 

  32. Owen, M.J. and McGuffin, P. 1993. Association and linkage: complementary strategies for complex disorders. J. Med. Genet. 30: 638–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schlosstein, L., Terasaki, J.I., Bluestone, R., and Pearson, C.M. 1973. High association of an HLA antigen, W27, with ankylosing spondylitis. N. Engl. J. Med. 288: 704–706.

    Article  CAS  PubMed  Google Scholar 

  34. Brewerton, D.A., Caffrey, M., Hart, F.D., James, D.C.D., Nicholls, A., and Sturrocj, R.D. 1973. Ankylosing spondylitis and HLA 27. Lancet 1: 904–907.

    Article  CAS  PubMed  Google Scholar 

  35. Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S. and Roses, A.D. 1993. Apolipoprotein-e high-avidity binding to beta-amyloid and increased frequency of type-4 allele in late-onset familial Alzheimer-disease. Proc. Natl. Acad. Sci. USA 90: 1977–1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saunders, A.M., Strittmatter, W.J., Schmechel, D., St George-Hyslop, P.H., Pericak-Vance, M.A., Joo, S.H. et al. 1993. Association of apolipoprotein-e allele epsilon-4 with late-onset familial and sporadic Alzheimer's-disease. Neurology 43: 1467–1472.

    Article  CAS  PubMed  Google Scholar 

  37. Jorde, L.B. 1995. Linkage disequilibrium as a gene-mapping tool. Am. J. Hum. Genet. 56: 11–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Curtis, D. 1997. Use of siblings in case-control association studies. Ann. Hum. Genet. 61: 319–333.

    Article  CAS  PubMed  Google Scholar 

  39. Spielman, R.S.R.E., McGinnis, R.E, and Ewens, W.J. 1993. Transmission test for link-age disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schaid, D.J., Sommer, S.S. 1994. Comparison of statistics for candidate-gene association studies using cases and parents. Am. J. Hum. Genet. 55: 402–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Spielman, R.S. and Ewens, W.J. 1996. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet. 59: 983–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Langefeld, C.D., Pericak-Vance, M.A., Saunders, A.M., and Boehnke, M. Family-based tests for association using discordant sib pairs. Am. J. Hum. Genet. 61S:1643.

  43. Ewens, W.J. and Spielman, R.S. 1997. The sib-TDT (S-TDT): a TDT (transmission/disequilbrium test) without parents. Am. J. Hum. Genet. 61S:1600.

    Google Scholar 

  44. Kruglyak, L. 1997. The use of a genetic map of biallelic markers in linkage studies. Nat. Genet. 17: 21–24.

    Article  CAS  PubMed  Google Scholar 

  45. Grompe, M. 1993. The rapid detection of unknown mutations in nucleic acids. Nat. Genet. 5: 111–117.

    Article  CAS  PubMed  Google Scholar 

  46. Mashal, R.D. and Sklar, J. 1996. Practical methods of mutation detection. Curr. Opin. Genet. Dev. 6: 275–280.

    Article  CAS  PubMed  Google Scholar 

  47. Hawkins, J.R. 1997. Finding mutations. IRL Press at Oxford University Press.

    Google Scholar 

  48. Cotton, R.G.H. 1997. Mutation detection. Oxford University Press.

    Google Scholar 

  49. Hayashi, K. and Yandell, D.W., 1993. How Sensitive Is PCR-SSCP? Hum. Mutat. 2: 338–346.

    Article  CAS  PubMed  Google Scholar 

  50. Naylor, J.A., Green, P.M., Rizza, C.R. and Giannelli, F. 1993. Analysis of factor VIII mRNA reveals defects in every one of hemophilia A patients. Hum. Mol. Genet. 2: 11–17.

    Article  CAS  PubMed  Google Scholar 

  51. Roberts, R.G. Bobrow, M., and Bentley, D.R. 1992. Point mutations in the dystrophin gene. Proc. Natl. Acad. Sci. USA. 89: 2331–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khurshid, F. and Beck, S. 1993. Error analyisis in manual and automated DNA sequencing. Anal. Biochem. 208: 138–143.

    Article  CAS  PubMed  Google Scholar 

  53. Shumaker, J.M., Metspalu, A., and Caskey, C.T. 1996. Mutation detection by solid-phase primer extension. Hum. Mutat. 7: 346–354.

    Article  CAS  PubMed  Google Scholar 

  54. Pastinen, T., Kurg, A., Metspalu, A., Peltonen, L., and Syvanen, A.C. 1997. Minisequencing—a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7: 606–614.

    Article  CAS  PubMed  Google Scholar 

  55. Hoheisel, J.D. 1997. Oligomer-chip technology. Trends Biotechnol. 15: 465–469.

    Article  CAS  Google Scholar 

  56. Editorial. 1996. To affinity… and beyond! Nat. Genet. 14: 367–370.

  57. Joyner, A. (ed.) 1993. Gene Targeting. A practical approach. Oxford University Press.

  58. Russell, W.L., Kelly, E.M., Hunsicker, P.R., Bangham, J.W., Maddux, S.C., and Phipps, E.L. 1979. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl. Acad. Sci. USA, 76: 5818–5819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H.S. 1977. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813.

    Article  Google Scholar 

  60. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86: 2766–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. White, M.B., Carvalho, M., Derse, D., O'Brien, S.J., and Dean, M. 1992. Detecting single base substitutions as heteroduplex polymorphisms. Genomics 12: 301–306.

    Article  CAS  PubMed  Google Scholar 

  62. Fischer, S.G. and Lerman, L.S. 1983. DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80: 1579–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Riesner, D., Steger, G., Zimmat, R., Owens, R.A., Wagenhöfer, M., Hillen, W., et al. 1989. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10: 377–389.

    Article  CAS  PubMed  Google Scholar 

  64. Myers, R.M., Larin, Z., and Maniatis, T. 1985. Detection of single base substitu-tions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230: 1242–1246.

    Article  CAS  PubMed  Google Scholar 

  65. Rowley, G., Saad, S., Giannelli, F., and Green, P.M. 1995. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage. Genomics 30: 574–582.

    Article  CAS  PubMed  Google Scholar 

  66. Roberts, E., Deeble, V.J., Woods, C.G., and Taylor, G.R. 1997. Potassium-permanganate and tetraethylammonium chloride are a safe and effective substitute for osmium-tetroxide in solid-phase fluorescent chemical cleavage of mismatch. Nucl. Acids Res. 25: 3377–3378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Youil, R., Kemper, B., and Cotton, R.G.H. 1996. Detection of 81 of 81 known mouse beta-globin promoter mutations with T4 endonuclease-VII—the EMC method. Genomics 32: 431–435.

    Article  CAS  PubMed  Google Scholar 

  68. Smith., J. and Modrich, P. 1996. Mutation detection with MutH MutL, and MutS mismatch repair proteins. Proc. Natl. Acad. Sci. USA 93: 4374–4379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Underhill, P.A., Jin, L., Zemans, R., Oefner, P.J., and Cavalli-Sforza, L.L. 1996. A pre-Columbian Y-chromosome-specific transition and its implications for human evolutionary history. Proc. Natl. Acad. Sci. USA 93: 196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roskey, M.T., Juhasz, P., Smirnov, I.P., Takach, E.J., Martin, S.A., and Haff, L.A. 1996. DNA sequencing by delayed extraction-matrix-assisted laser desorption/ionization time of flight mass spectrometry. Proc. Natl. Acad. Sci. USA 93: 4724–4729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Livak, K.J., Marmaro, J. and Todd, J.A. 1995. Towards fully automated genome-wide polymorphism screening. Nat. Genet. 9: 341–342.

    Article  CAS  PubMed  Google Scholar 

  72. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P, Fodor, S.P.A. 1994. Light-generated oligonucleotide arrays for rapid DNA-sequence analysis. Proc. Nat/. Acad. Sci. USA 91: 5022–5026.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Schafer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schafer, A., Hawkins, J. DNA variation and the future of human genetics. Nat Biotechnol 16, 33–39 (1998). https://doi.org/10.1038/nbt0198-33

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0198-33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing