Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Efficient Production of a Functional Single-Chain Antidigoxin Antibody via an Engineered Bacillus subtilis Expression-Secretion System

Abstract

We have applied a Bacillus subtilis expression-secretion system to produce a functional antidigoxin SCA (single-chain antibody consisting of VL-linker-VH) and the individual variable domains of light (VL) and heavy (VH) chains. The secreted antidigoxin SCA can be affinity purified in one step by applying the culture supernatant directly to a ouabain-Sepharose column. N-terminal sequence determination indicated that the protein has the expected N-terminus with the signal peptide properly processed. Affinity and ligand specificity studies demonstrated that the engineered antidigoxin SCA has almost identical properties as those of the parental monoclonal antibody. The use of B. subtilis WB600, an engineered, six-extracellular protease-deficient strain, is vital for the production of antidigoxin SCA in high quality and quantity (5 mg/liter in a shake flask culture). All the secreted SCAs are biologically active. The ability to produce secreted SCAs by the B. subtilis expression system provides a simple and efficient means to analyze the binding properties of engineered antibodies generated through rational design or site-directed mutagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kulick, D.L. and Rahimtoola, S.H. 1991. Current role of digitalis therapy in patients with congestive heart failure. JAMA 265: 2995–2560.

    Article  CAS  Google Scholar 

  2. Litovitz, T. and Veltri, J.C. 1987. 1986 annual report of the American Association of Poison Control Centers National Data Collection System. Am. J. Emerg. Med. 5: 405–445.

    Article  CAS  Google Scholar 

  3. Aronson, J.K. 1983. Digitalis intoxication. Clin. Sci. 64: 253–258.

    Article  CAS  Google Scholar 

  4. Antman, E.M. and Smith, T.W. 1985. Digitalis toxicity. Ann. Rev. Med. 36: 357–367.

    Article  CAS  Google Scholar 

  5. Antman, E.M., Wenger, T.L., Butler, V.P. Jr., Haber, E. and Smith, T.W. 1990. Treatment of 150 cases of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments. Circulation 81: 1744–1752.

    Article  CAS  Google Scholar 

  6. Mauskopf, J.A. and Wenger, T.L. 1991. Cost-effectiveness analysis of the use of digoxin immune Fab (ovine) for treatment of digoxin toxicity. Am. J. Cardiol. 68: 1709–1714.

    Article  CAS  Google Scholar 

  7. Smith, T.W., Lloyd, B.L., Spicer, N. and Haber, E. 1979. Immunogenicity and kinetics of distribution and elimination of sheep digoxin-specific IgG and Fab fragments in the rabbit and baboon. Clin. Exp. Immunol. 36: 384–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson, S., Kaufman, B.M., Lee, S.-M., Lee, T., Pope, S.H., Riordan, G.S. and Whitlow, M. 1988. Single-chain antigen-binding proteins. Science 242: 423–426.

    Article  CAS  Google Scholar 

  9. Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M.-S., Novotny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R.E., Haber, E., Crea, R. and Oppermann, H. 1988. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 5879–5883.

    Article  CAS  Google Scholar 

  10. Riechmann, L., Foote, J. and Winter, G. 1988. Expression of an antibody Fv fragment in myeloma cells. J. Mol. Biol. 203: 825–828.

    Article  CAS  Google Scholar 

  11. Skerra, A. and Pluckthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041.

    Article  CAS  Google Scholar 

  12. Glockshuber, R., Malia, M., Pfitzinger, I. and Pluckthun, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29: 1362–1367.

    Article  CAS  Google Scholar 

  13. Anand, N.N., Mandal, S., Mackenzie, C.R., Sadowska, J., Sigurskjold, B., Young, N.M., Bundle, D.R. and Narang, S.A. 1991. Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen. J. Biol. Chem. 266: 21874–21879.

    CAS  PubMed  Google Scholar 

  14. Anthony, J., Near, R., Wong, S.-L., Iida, E., Ernst, E., Wittekind, M., Haber, E. and Ng, S.-C. 1992. Production of stable anti-digoxin Fv in Escherichia coli. Mol. Immunol. 29: 1237–1247.

    Article  CAS  Google Scholar 

  15. Hodgson, J. 1991. Making monoclonals in Microbes. Bio/Technology 9: 421–425.

    CAS  PubMed  Google Scholar 

  16. Pluckthun, A. 1991. Antibody engineering: Advances from the use of Escherichia coli expression systems. Bio/Technology 9: 545–551.

    CAS  PubMed  Google Scholar 

  17. Pluckthun, A. 1991. Antibody engineering. Curr. Opinion Biotech. 2: 238–246.

    Article  CAS  Google Scholar 

  18. Pluckthun, A. 1990. Antibodies from Escherichia coli. Nature 347: 497–498.

    Article  CAS  Google Scholar 

  19. Pluckthun, A. and Skerra, A. 1989. Expression of functional antibody Fv and Fab fragments in Escherichia coli. Methods Enzymol. 178: 497–515.

    Article  CAS  Google Scholar 

  20. Huston, J.S., Meredith-Hunter, M., Tai, M.-S., McCarney, J., Warren, F., Haber, E. and Oppermann, H. 1991. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymoi. 203: 46–88.

    Article  CAS  Google Scholar 

  21. Skerra, A., Pfitzinger, I. and Pluckthun, A. 1991. The functional expression of antibody Fv fragments in Escherichia coli: Improved vectors and a generally applicable purification technique. Bio/Technology 9: 273–278.

    CAS  Google Scholar 

  22. Pantoliano, M.W., Bird, R.E., Johnson, S., Asel, E.D., Dodd, S.W., Wood, J.F. and Hardman, K.D. 1991. Conformational stability, folding, and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Escherichia coli. Biochemistry 30: 10117–10125.

    Article  CAS  Google Scholar 

  23. Pantoliano, M., Alexander, P., Dodd, S., Bryan, P., Rollence, M., Wood, J. and Fahnestock, S. 1989. The characterization of single chain antibodies synthesized in Bacillus subtilis. J. Cell. Biochem. 13A: 91.

    Google Scholar 

  24. Doi, R.H., Wong, S.-L. and Kawamura, F. 1986. Potential use of Bacillus subtilis for secretion and production of foreign proteins. Trends Biotech. 4: 232–235.

    Article  CAS  Google Scholar 

  25. Wong, S.-L., Kawamura, F. and Doi, R.H. 1986. Use of the Bacillus subtilis subtilisin signal peptide for efficient secretion of β-lactamase during growth. J. Bacteriol. 168: 1005–1009.

    Article  CAS  Google Scholar 

  26. He, X.-S., Bruckner, R. and Doi, R.H. 1991. The protease genes of Bacillus subtilis. Res. Microbiol. 142: 797–803.

    Article  CAS  Google Scholar 

  27. Wu, X.-C., Lee, W., Tran, L. and Wong, S.-L. 1991. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173: 4952–4958.

    Article  CAS  Google Scholar 

  28. Wong, S.-L. 1989. Development of an inducible and enhancible expression and secretion system in Bacillus subtilis. Gene 83: 215–223.

    Article  CAS  Google Scholar 

  29. Wang, P.-Z. and Doi, R.H. 1984. Overlapping promoters transcribed by Bacillus subtilis σ55 and σ37 RNA polymerase holoenzymes during growth and stationary phases. J. Biol. Chem. 259: 8619–8625.

    CAS  PubMed  Google Scholar 

  30. Near, R.I., Ng, S.C., Mudgett-Hunter, M., Hudson, N.W., Margolies, M.N., Seidman, J.G., Haber, E. and Jacobson, M. 1990. Heavy and light chain contributions to antigen binding in an anti-digoxin chain recombinant antibody produced by transfection of cloned anti-digoxin antibody genes. Mol. Immunol. 27: 901–909.

    Article  CAS  Google Scholar 

  31. Mudgett-Hunter, M., Margolies, M.N., Ju, A. and Haber, E. 1982. High-affinity monoclonal antibodies to the cardiac glycoside, digoxin. J. Immunol. 129: 1165–1172.

    Google Scholar 

  32. Novotny, J. and Margolies, M.N. 1983. Amino acid sequence of the light chain variable region from a mouse anti-digoxin hybridoma antibody. Biochemistry 22: 1153–1158.

    Article  CAS  Google Scholar 

  33. Tai, M.-S., Mudgett-Hunter, M., Levinson, D., Wu, G.-M., Haber, E., Oppermann, H. and Huston, J. S. 1990. A bifunctional fusion protein containing Fc-binding fragment B of Staphylococcal protein A amino terminal to antidigoxin single-chain Fv. Biochemistry 29: 8024–8030.

    Article  CAS  Google Scholar 

  34. Better, M., Weickmann, J. and Lin, Y.-L. 1990, Production and scale up of chimeric Fab fragments from bacteria. p. 105. In: Advances in Gene Technology: The Molecular Biology of Immune Diseases and the Immune Response. Streilein, J.W., Ahmad, F., Bialy, H. et al. (Eds.). IRL Press, Oxford, UK.

    Google Scholar 

  35. Carter, P., Kelley, R.F., Rodrigues, M.L., Snedecor, B., Covarrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. and Henner, D. 1992. High level Escherichia coli expression and production of a bivalent humanized antibody fragment. Bio/Technology 10: 163–167.

    CAS  PubMed  Google Scholar 

  36. Skerra, A. and Pluckthun, A. 1991. Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in Escherichia coli: influence of disulphides and m-prolines. Protein Engineering 4: 971–979.

    Article  CAS  Google Scholar 

  37. Haber, E. 1986. In vivo diagnostic and therapeutic uses of monoclonal antibodies in cardiology. Ann. Rev. Med. 37: 249–261.

    Article  CAS  Google Scholar 

  38. Larson, S.M. 1990. Improved tumor targeting with radiolabeled, recombinant, single-chain, antigen-binding protein. JNCI 82: 1173–1174.

    Article  CAS  Google Scholar 

  39. Colcher, D., Bird, R., Roselli, M., Hardman, K.D., Johnson, S., Pope, S., Dodd, S.W., Pantoliano, M.W., Milenic, D.E. and Schlom, J. 1990. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. JNCI 82: 1191–1197.

    Article  CAS  Google Scholar 

  40. Waldmann, T.A. 1991. Monoclonal antibodies in diagnosis and therapy. Science 252: 1657–1662.

    Article  CAS  Google Scholar 

  41. Roberts, S., Cheetham, J.C. and Rees, A.R. 1987. Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering. Nature 328: 731–734.

    Article  CAS  Google Scholar 

  42. Wong, S.-L., Wang, L.-F. and Doi, R.H. 1988. Cloning and nucleotide sequence of senN, a novel Bacillus natto gene that regulates expression of extracellular protein genes. J. Gen. Microbiol. 134: 3269–3276.

    CAS  PubMed  Google Scholar 

  43. Hailing, S.M., Sanchez-Anzaldo, F.J., Fukuda, R., Doi, R.H. and Meares, C.F. 1977. Zinc is associated with the beta subunit of DNA dependent RNA polymerase of Bacillus subtilis. Biochemistry 16: 2880–2884.

    Article  Google Scholar 

  44. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T. and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Article  CAS  Google Scholar 

  45. Horton, R.M., Cai, Z., Ho, S.N. and Pease, L.R. 1990. Gene splicing by overlap extension: Tailor-made genes using the polymerase chain reaction. BioTechniques 8: 528–535.

    CAS  PubMed  Google Scholar 

  46. Steinmetz, M., LeCoq, D., Aymerich, S., Gonzy-Treboul, G. and Gay, P. 1985. The DNA sequence of the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol. Gen. Genet. 200: 220–228.

    Article  CAS  Google Scholar 

  47. Matsudaira, P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262: 10035–10038.

    CAS  Google Scholar 

  48. Smith, D.B. and Johnson, K.S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31–40.

    Article  CAS  Google Scholar 

  49. Wu, X.-C., Nathoo, S., Pang, A.S.-H., Carne, T. and Wong, S.-L. 1990. Cloning, genetic organization, and characterization of a structural gene encoding bacillopeptidase F from Bacillus subtilis. J. Biol. Chem. 265: 6845–6850.

    CAS  PubMed  Google Scholar 

  50. Bolton, A.E. and Hunter, W.M. 1973. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem. J. 133: 529–539.

    Article  CAS  Google Scholar 

  51. Schagger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl-sulfate-poly-acrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368–379.

    Article  CAS  Google Scholar 

  52. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  CAS  Google Scholar 

  53. Tran, L., Wu, X.-C. and Wong, S.-L. 1991. Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. J. Bacteriol. 173: 6364–6372.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XC., Ng, SC., Near, R. et al. Efficient Production of a Functional Single-Chain Antidigoxin Antibody via an Engineered Bacillus subtilis Expression-Secretion System. Nat Biotechnol 11, 71–76 (1993). https://doi.org/10.1038/nbt0193-71

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0193-71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing