Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Ethanol Accumulation in Cultures of Pachysolen Tannophilus on D-Xylose is Associated with a Transition to a State of Low Oxygen Consumption

Abstract

Ethanol accumulation in aerobic batch cultures of Pachysolen tannophilus growing on D-xylose is associated with a transition to a state of low oxygen consumption, and the events triggering the accumulation differ from those of a Crabtree effect. The transition explains the accumulation of ethanol at only a particular interval during the growth of the culture, shows that such accumulation is not dependent on limited oxygen supply, and offers approaches to enhancing the yield of ethanol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rydholm, S.A. 1965. Pulping Processes, p. 97. Interscience Publishers, New York.

    Google Scholar 

  2. Maleszka, R., Veliky, I.A. and Schneider, H. 1981. Enhanced rate of ethanol production from D-xylose using recycled or immobilized cells of Pachysolen tannophilus. Biotechnol. Lett. 3: 415–420.

    Article  CAS  Google Scholar 

  3. Slininger, P.J., Bothast, R.J., Van Cauwenberge, J.E. and Kurtzman, C.P. 1982. Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol. and Bioeng. 24: 371–384.

    Article  CAS  Google Scholar 

  4. du Preez, J.C. and van der Walt, J.P. 1983. Fermentation of D-xylose to ethanol by a strain of Candida shehatae. Biotechnol. Lett. 5: 357–362.

    Article  CAS  Google Scholar 

  5. Slapack, G., Edey, E., Mahmourides, G. and Schneider, H. 1984. Ethanol from hexoses and pentoses in spent sulfite liquor. In: Biotechnology Advances, M. Moo-Young, (ed.), Pergamon Press. In press.

    Google Scholar 

  6. Margaritis, A. and Bajpai, P. 1982. Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Appl. Environ. Microbiol. 44: 1039–1041.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gong, C.-S., McCracken, L.D. and Tsao, G.T. 1981. Direct fermentation of D-xylose to ethanol by a xylose-fermenting yeast mutant, Candida sp. XF217. Biotechnol. Lett. 3: 245–250.

    Article  CAS  Google Scholar 

  8. Fietcher, A., Fuhrmann, G.F. and Kappeli, O. 1981. Regulation of glucose metabolism in growing yeast cells. Adv. Microbiol. Physiol. 22: 123–183.

    Article  Google Scholar 

  9. Maleszka, R. and Schneider, H. 1982. Fermentation of D-xylose, xylitol and D-xylulose by yeasts. Can. J. Microbiol. 28: 360–363.

    Article  CAS  PubMed  Google Scholar 

  10. Schneider, H., Maleszka, R., Neirinck, L., Veliky, I.A., Wang, P.Y. and Chan, Y.K. 1983. Ethanol production from D-xylose and several other carbohydrates by Pachysolen tannophilus and other yeasts. Adv. in Biochem. Engineering/Biotechnology 27: 57–71.

    Article  CAS  Google Scholar 

  11. du Preez, J.C., Prior, B.A. and Monteiro, A.M.T. 1984. The effect of aeration on xylose fermentation by Candida shehatae and Pachysolen tannophilus. Arch. Microbiol. Biotechnol. 19: 261–266.

    Article  CAS  Google Scholar 

  12. Baillargeon, M.W., Jansen, N.B., Gong, C.S. and Tsao, G.T. 1983. Effect of oxygen uptake rate on ethanol production by a xylose-fermenting yeast mutant, Candida sp. XF217. Biotechnol. Lett. 5: 339–344.

    Article  CAS  Google Scholar 

  13. Jeffries, T.W. 1981. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnol. Lett. 3: 213–218.

    Article  CAS  Google Scholar 

  14. Schvester, P., Robinson, C.W. and Moo-Young, M. 1983. Xylose fermentation to ethanol by Pachysolen tannophilus. Biotech. Bioeng. Symp. 13: 131–152.

    CAS  Google Scholar 

  15. Debus, D., Methner, H., Schulze, D. and Dellweg, H. 1983. Fermentation of xylose with the yeast Pachysolen tannophilus. Eur. J. Appl. Microbiol. Technol. 17: 287–291.

    Article  CAS  Google Scholar 

  16. Maleszka, R. and Schneider, H. 1982. Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on D-xylose. Appl. Environ. Microbiol. 44: 909–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahmourides, G., Maleszka, R., James, A.P. and Schneider, H. 1983. Mutants of Pachysolen tannophilus that produce enhanced amounts of acetic acid from D-xylose and other sugars. Biotechnol. Lett. 5: 29–32.

    Article  CAS  Google Scholar 

  18. Woehrer, W. and Roehr, M. 1981. Regulatory aspects of bakers' yeast metabolism in aerobic fed-batch cultures. Biotechnol. Bioeng. 23: 567–581.

    Article  CAS  Google Scholar 

  19. Magdalena, P., Kappeli, O. and Fiechter, A. 1983. An expanded concept for the glucose effect in the yeast Saccharomyces cerevisiae. Involvement of short- and long-term regulation. J. Gen. Microbiol. 129: 43–49.

    Google Scholar 

  20. Utter, M.F., Duell, E.A. and Bernofsky, C. 1968. Alterations in the respiratory enzymes of the mitochondria of growing and resting yeast, p. 197–215. In: Aspects of Yeast Metabolism, A. K. Mills and H. Krebs (eds.), Blackwell Scientific Publications, Oxford and Edinburgh.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmourides, G., Lee, H., Maki, N. et al. Ethanol Accumulation in Cultures of Pachysolen Tannophilus on D-Xylose is Associated with a Transition to a State of Low Oxygen Consumption. Nat Biotechnol 3, 59–62 (1985). https://doi.org/10.1038/nbt0185-59

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0185-59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing