Overview | Published:

The origins and the future of microfluidics

Nature volume 442, pages 368373 (27 July 2006) | Download Citation

Subjects

Abstract

The manipulation of fluids in channels with dimensions of tens of micrometres — microfluidics — has emerged as a distinct new field. Microfluidics has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology. But the field is still at an early stage of development. Even as the basic science and technological demonstrations develop, other problems must be addressed: choosing and focusing on initial applications, and developing strategies to complete the cycle of development, including commercialization. The solutions to these problems will require imagination and ingenuity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems — capillary electrophoresis on a chip. J. Chromatog. 593, 253–258 (1992).

  2. 2.

    , , & Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461–3473 (2002).

  3. 3.

    & Flexible methods for microfluidics. Phys. Today 54, 42–48 (2001).

  4. 4.

    , & Technologies for nanofluidic systems: top-down vs. bottom-up — a review. Lab Chip 5, 492–500 (2005).

  5. 5.

    , , , & Nanofluidic channels with elliptical cross sections formed using a nonlithographic process. Appl. Phys. Lett. 83, 4836–4838 (2003).

  6. 6.

    & Integrated nanoliter systems. Nature Biotechnol. 21, 1179–1183 (2003).

  7. 7.

    et al. Torque-actuated valves for microfluidics. Anal. Chem. 77, 4726–4733 (2005).

  8. 8.

    & Micromixers — a review. J. Micromech. Microeng. 15, R1–R16 (2005).

  9. 9.

    , , , & Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21, 1547–1555 (2005).

  10. 10.

    , & Design for mixing using bubbles in branched microfluidic channels. Appl. Phys. Lett. 86, 244108 (2005).

  11. 11.

    & A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004).

  12. 12.

    et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

  13. 13.

    , & Microfluidic large-scale integration. Science 298, 580–584 (2002).

  14. 14.

    , & Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

  15. 15.

    & Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

  16. 16.

    , & Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

  17. 17.

    Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal. Chem. 73, 2353–2365 (2001).

  18. 18.

    , , & Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices. Electrophoresis 24, 3784–3792 (2003).

  19. 19.

    , & Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett. 88, 123114 (2006).

  20. 20.

    , , & A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl Acad. Sci. USA 99, 16531–16536 (2002).

  21. 21.

    , , , & Using microfluidics to decouple nucleation and growth of protein crystals. J. Amer. Chem. Soc. (submitted).

  22. 22.

    , , & A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew. Chem. Int. Ed. 43, 2508–2511 (2004).

  23. 23.

    & Generating electrospray from microchip devices using electroosmotic pumping. Anal. Chem. 69, 1174–1178 (1997).

  24. 24.

    & Lab-on-a-chip: microfluidics in drug discovery. Nature Rev. Drug Discov. 5, 210–218 (2006).

  25. 25.

    , & Microfluidic technologies in drug discovery. Drug Discov. Today 10, 1377–1383 (2005).

  26. 26.

    & Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003).

  27. 27.

    et al. Microfluidic device for single-cell analysis. Anal. Chem. 75, 3581–3586 (2003).

  28. 28.

    et al. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip 4, 357–362 (2004).

  29. 29.

    & Single-molecule fluorescence detection in microfluidic channels — the Holy Grail in µTAS? Anal. Bioanal. Chem. 382, 1771–1782 (2005).

  30. 30.

    , , & Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab Chip 5, 337–343 (2005).

  31. 31.

    et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310, 1793–1796 (2005).

  32. 32.

    & Perfectly monodisperse microbubbling by capillary flow focusing. Phys. Rev. Lett. 87, 274501 (2001).

  33. 33.

    et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85, 2649–2651 (2004).

  34. 34.

    , , & Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001).

  35. 35.

    , , & Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503 (2004).

  36. 36.

    , & Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).

  37. 37.

    , , , & Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4, 292–298 (2004).

  38. 38.

    et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed. 44, 724–728 (2005).

  39. 39.

    et al. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl Acad. Sci. USA 101, 12434–12438 (2004).

  40. 40.

    & Tunable microfluidic optical fiber gratings. Appl. Phys. Lett. 82, 1338–1340 (2003).

  41. 41.

    et al. Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens. J. 3, 788–795 (2003).

  42. 42.

    & Microfuidic single-mode laser using high-order Bragg grating and antiguiding segments. Opt. Express 13, 344–351 (2005).

  43. 43.

    et al. A microfluidic 2×2 optical switch. Appl. Phys. Lett. 85, 6119–6121 (2004).

  44. 44.

    et al. A low-threshold, high-efficiency microfluidic waveguide laser. J. Am. Chem. Soc. 127, 8952–8953 (2005).

  45. 45.

    , , , & Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89, 1–8 (2005).

  46. 46.

    et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5, 401–406 (2005).

  47. 47.

    et al. Microfluidic multicompartment device for neuroscience research. Langmuir 19, 1551–1556 (2003).

  48. 48.

    et al. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5, 611–618 (2005).

  49. 49.

    et al. Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem. Biol. 10, 123–130 (2003).

  50. 50.

    et al. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76, 5257–5264 (2004).

  51. 51.

    et al. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75, 5646–5655 (2003).

  52. 52.

    et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75, 1671–1675 (2003).

  53. 53.

    , , & Mammalian embryo culture in a microfluidic device. Methods Mol. Biol. 254, 375–382 (2004).

  54. 54.

    et al. Handling individual mammalian embryos using microfluidics. IEEE Trans. Biomed. Eng. 48, 570–578 (2001).

  55. 55.

    , , , & Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–1138 (2005).

  56. 56.

    , & Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).

  57. 57.

    Silicon-based microchemical systems: characteristics and applications. MRS Bull. 31, 101–107 (2006).

  58. 58.

    & State-of-the-art in microreaction technology: concepts, manufacturing and applications. Electrochim. Acta 44, 3679–3689 (1999).

  59. 59.

    et al. Modular microreaction systems for homogeneously and heterogeneously catalyzed chemical synthesis. Helv. Chim. Acta 88, 1–9 (2005).

  60. 60.

    , , , & Solvent-resistant photocurable “liquid Teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).

  61. 61.

    , , , & Miniaturised nucleic acid analysis. Lab Chip 4, 534–546 (2004).

  62. 62.

    , & Microfluidics-based systems biology. Mol. Biosys. 2, 97–112 (2006).

  63. 63.

    , , , & Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26, R73–R98 (2005).

  64. 64.

    , & Microfluidic applications for andrology. J. Androl. 26, 664–670 (2005).

  65. 65.

    , , , & Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137–140 (2005).

Download references

Acknowledgements

I thank M. Fuerstman for extensive help in preparing this manuscript. This work was supported by a grant from the National Institutes of Health.

Author information

Affiliations

  1. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. gwhitesides@gmwgroup.harvard.edu

    • George M. Whitesides

Authors

  1. Search for George M. Whitesides in:

Competing interests

The author declares no competing financial interests.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nature05058

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing