Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs

Abstract

Hox genes, located at one end of the HoxD cluster, are essential for the development of the extremities of our limbs; that is, the digits. This ‘collinear’ correspondence is accompanied by a gradual decrease in the transcriptional efficiency of the genes. To decipher the underlying regulatory mechanisms, and thus to understand better how digits develop, we engineered a series of deletions and duplications in vivo. We find that HoxD genes compete for a remote enhancer that recognizes the locus in a polar fashion, with a preference for the 5′ extremity. Modifications in either the number or topography of Hoxd loci induced regulatory reallocations affecting both the number and morphology of digits. These results demonstrate why genes located at the extremity of the cluster are expressed at the distal end of the limbs, following a gradual reduction in transcriptional efficiency, and thus highlight the mechanistic nature of collinearity in limbs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Collinearity in developing limbs.
Figure 2: Targeted deletions induce regulatory reallocations.
Figure 3: The evolutionarily conserved region RXII cooperates with the Hoxd13 locus for positioning the enhancer in the 5′ end of the cluster.
Figure 4: Supernumerary loci titrate the effect of the digit enhancer in a polar fashion.
Figure 5: Impact of Hoxd loci deletions and duplications on the regulation of Evx2.
Figure 6: A potential mechanism underlying collinearity in limbs.

Similar content being viewed by others

References

  1. Rijli, F. M. & Chambon, P. Genetic interactions of Hox genes in limb development: learning from compound mutants. Curr. Opin. Genet. Dev. 7, 481–487 (1997)

    Article  CAS  Google Scholar 

  2. Dolle, P., Izpisua-Belmonte, J. C., Falkenstein, H., Renucci, A. & Duboule, D. Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature 342, 767–772 (1989)

    Article  ADS  CAS  Google Scholar 

  3. Davis, A. P., Witte, D. P., Hsieh-Li, H. M., Potter, S. S. & Capecchi, M. R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–795 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Fromental-Ramain, C. et al. Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 122, 461–472 (1996)

    CAS  PubMed  Google Scholar 

  5. Tabin, C. J. Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell 66, 199–217 (1991)

    Article  CAS  Google Scholar 

  6. Duboule, D. How to make a limb? Science 266, 575–576 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Johnson, R. L., Riddle, R. D. & Tabin, C. J. Mechanisms of limb patterning. Curr. Opin. Genet. Dev. 4, 535–542 (1994)

    Article  CAS  Google Scholar 

  8. Dolle, P., Izpisua-Belmonte, J. C., Brown, J. M., Tickle, C. & Duboule, D. HOX-4 genes and the morphogenesis of mammalian genitalia. Genes Dev. 5, 1767–1767 (1991)

    Article  CAS  Google Scholar 

  9. Fromental-Ramain, C. et al. Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122, 2997–3011 (1996)

    CAS  PubMed  Google Scholar 

  10. Zakany, J., Fromental-Ramain, C., Warot, X. & Duboule, D. Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications. Proc. Natl Acad. Sci. USA 94, 13695–13700 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Duboule, D. Vertebrate Hox genes and proliferation: an alternative pathway to homeosis? Curr. Opin. Genet. Dev. 5, 525–528 (1995)

    Article  CAS  Google Scholar 

  12. Duboule, D. & Morata, G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet. 10, 358–364 (1994)

    Article  CAS  Google Scholar 

  13. Herault, Y., Fraudeau, N., Zakany, J. & Duboule, D. Ulnaless (Ul), a regulatory mutation inducing both loss-of-function and gain-of-function of posterior Hoxd genes. Development 124, 3493–3500 (1997)

    CAS  PubMed  Google Scholar 

  14. Peichel, C. L., Prabhakaran, B. & Vogt, T. F. The mouse Ulnaless mutation deregulates posterior HoxD gene expression and alters appendicular patterning. Development 124, 3481–3492 (1997)

    CAS  PubMed  Google Scholar 

  15. Spitz, F. et al. Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev. 15, 2209–2214 (2001)

    Article  CAS  Google Scholar 

  16. van der Hoeven, F., Zakany, J. & Duboule, D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell 85, 1025–1035 (1996)

    Article  CAS  Google Scholar 

  17. Kmita, M., van Der Hoeven, F., Zakany, J., Krumlauf, R. & Duboule, D. Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex. Genes Dev. 14, 198–211 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Herault, Y., Beckers, J., Gerard, M. & Duboule, D. Hox gene expression in limbs: colinearity by opposite regulatory controls. Dev. Biol. 208, 157–165 (1999)

    Article  CAS  Google Scholar 

  19. Herault, Y., Rassoulzadegan, M., Cuzin, F. & Duboule, D. Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nature Genet. 20, 381–384 (1998)

    Article  CAS  Google Scholar 

  20. Duboule, D. Patterning in the vertebrate limb. Curr. Opin. Genet. Dev. 1, 211–216 (1991)

    Article  CAS  Google Scholar 

  21. Dolle, P. et al. Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75, 431–441 (1993)

    Article  CAS  Google Scholar 

  22. Davis, A. P. & Capecchi, M. R. A mutational analysis of the 5′ HoxD genes: dissection of genetic interactions during limb development in the mouse. Development 122, 1175–1185 (1996)

    CAS  PubMed  Google Scholar 

  23. Kmita, M., Kondo, T. & Duboule, D. Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing. Nature Genet. 26, 451–454 (2000)

    Article  CAS  Google Scholar 

  24. Nelson, C. E. et al. Analysis of Hox gene expression in the chick limb bud. Development 122, 1449–1466 (1996)

    CAS  PubMed  Google Scholar 

  25. Kondo, T., Zakany, J. & Duboule, D. Control of colinearity in AbdB genes of the mouse HoxD complex. Mol. Cell 1, 289–300 (1998)

    Article  CAS  Google Scholar 

  26. Goff, D. J. & Tabin, C. J. Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth. Development 124, 627–636 (1997)

    CAS  PubMed  Google Scholar 

  27. Foley, K. P., Engel, J. D. . Individual stage selector element mutations lead to reciprocal changes in β- vs. ɛ-globin gene transcription: genetic confirmation of promoter competition during globin gene switching. Genes Dev. 6, 730–744 (1992)

    CAS  Google Scholar 

  28. Herault, Y., Beckers, J., Kondo, T., Fraudeau, N. & Duboule, D. Genetic analysis of a Hoxd-12 regulatory element reveals global versus local modes of controls in the HoxD complex. Development 125, 1669–1677 (1998)

    CAS  PubMed  Google Scholar 

  29. Kmita, M., Tarchini, B., Duboule, D. & Herault, Y. Evolutionnary conserved sequences are required for the insulation of the vertebrate HoxD complex in neural cells. Development 129, 5521–5528 (1976)

    Article  Google Scholar 

  30. Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209–213 (1995)

    Article  ADS  CAS  Google Scholar 

  31. Dillon, N., Trimborn, T., Strouboulis, J., Fraser, P. & Grosveld, F. The effect of distance on long-range chromatin interactions. Mol. Cell 1, 131–139 (1997)

    Article  CAS  Google Scholar 

  32. Tanimoto, K., Liu, Q., Bungert, J. & Engel, J. D. Effects of altered gene order or orientation of the locus control region on human beta-globin gene expression in mice. Nature 398, 344–348 (1999)

    Article  ADS  CAS  Google Scholar 

  33. Vidal, F., Sage, J., Cuzin, F. & Rassoulzadegan, M. Cre expression in primary spermatocytes: a tool for genetic engineering of the germ line. Mol. Reprod. Dev. 51, 274–280 (1998)

    Article  CAS  Google Scholar 

  34. Herault, Y., Hraba-Renevey, S., van der Hoeven, F. & Duboule, D. Function of the Evx-2 gene in the morphogenesis of vertebrate limbs. EMBO J. 15, 6727–6738 (1996)

    Article  CAS  Google Scholar 

  35. Inouye, M. Differential staining of cartilage and bone in fetal mouse skeleton by alcian blue and alizarin red. S. Cong. Anom. 16, 171–173 (1976)

    Google Scholar 

Download references

Acknowledgements

We thank M. Friedli for technical assistance, and J. Zakany and other colleagues from the Duboule laboratory for sharing mice, reagents, discussions and comments on the manuscript. This work was supported by funds from the Canton de Genève, the Swiss National Research Fund, the Claraz, Latsis, Cloetta and Louis-Jeantet foundations, as well as the NCCR Frontiers in Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Duboule.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kmita, M., Fraudeau, N., Hérault, Y. et al. Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 420, 145–150 (2002). https://doi.org/10.1038/nature01189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01189

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing