Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution

Abstract

The single-subunit bacteriophage T7 RNA polymerase carries out the transcription cycle in an identical manner to that of bacterial and eukaryotic multisubunit enzymes. Here we report the crystal structure of a T7 RNA polymerase elongation complex, which shows that incorporation of an 8-base-pair RNA–DNA hybrid into the active site of the enzyme induces a marked rearrangement of the amino-terminal domain. This rearrangement involves alternative folding of about 130 residues and a marked reorientation (about 130° rotation) of a stable core subdomain, resulting in a structure that provides elements required for stable transcription elongation. A wide opening on the enzyme surface that is probably an RNA exit pathway is formed, and the RNA–DNA hybrid is completely buried in a newly formed, deep protein cavity. Binding of 10 base pairs of downstream DNA is stabilized mostly by long-distance electrostatic interactions. The structure implies plausible mechanisms for the various phases of the transcription cycle, and reveals important structural similarities with the multisubunit RNA polymerases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The T7 RNAP EC crystal structure.
Figure 2: Comparison between the T7 RNAP EC and IC structures.
Figure 3: Structural homology of the T7 RNAP core subdomain.
Figure 4: Protein–nucleic acid interactions.
Figure 5: Model of the late IC.

Similar content being viewed by others

References

  1. McAllister, W. T. Transcription by T7 RNA polymerase. Nucleic Acids Mol. Biol. 11, 15–25 (1997)

    Article  CAS  Google Scholar 

  2. Brieba, L. G. & Sousa, R. T7 promoter release mediated by DNA scrunching. EMBO J. 20, 6826–6835 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gunderson, S. I., Chapman, K. A. & Burgess, R. R. Interactions of T7 RNA polymerase with T7 late promoters measured by footprinting with methidiumpropyl-EDTA-iron(II). Biochemistry 26, 1539–1546 (1987)

    Article  CAS  PubMed  Google Scholar 

  4. Ikeda, R. A. & Richardson, C. C. Interactions of the RNA polymerase of bacteriophage T7 with its promoter during binding and initiation of transcription. Proc. Natl Acad. Sci. USA 83, 3614–3618 (1986)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Place, C., Oddos, J., Buc, H., McAllister, W. T. & Buckle, M. Studies of contacts between T7 RNA polymerase and its promoter reveal features in common with multisubunit RNA polymerases. Biochemistry 38, 4948–4957 (2000)

    Article  Google Scholar 

  6. Martin, C. T., Muller, D. K. & Coleman, J. E. Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry 27, 3966–3974 (1988)

    Article  CAS  PubMed  Google Scholar 

  7. Liu, C. & Martin, C. T. Promoter clearance by T7 RNA polymerase. J. Biol. Chem. 277, 2725–2731 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Liu, C. & Martin, C. T. Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase. J. Mol. Biol. 308, 465–475 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Temiakov, D. et al. The specificity loop of T7 RNA polymerase interacts first with the promoter and then with the elongating transcript, suggesting a mechanism for promoter clearance. Proc. Natl Acad. Sci. USA 97, 14109–14114 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, J. & Sousa, R. T7 RNA polymerase elongation complex structure and movement. J. Mol. Biol. 303, 347–358 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Sousa, R., Chung, Y. J., Rose, J. P. & Wang, B. C. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution. Nature 364, 593–599 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Jeruzalmi, D. & Steitz, T. A. Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme. EMBO J. 17, 4101–4113 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheetham, G., Jeruzalmi, D. & Steitz, T. A. Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature 399, 80–83 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Cheetham, G. & Steitz, T. A. Structure of a transcribing T7 RNA polymerase initiation complex. Science 286, 2305–2309 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 292, 1863–1876 (2001)

    ADS  CAS  PubMed  Google Scholar 

  17. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Ångstrom resolution. Science 292, 1876–1882 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Murakami, K. S., Musada, S. & Darst, S. A. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science 296, 1280–1284 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Vassylyev, D. G. et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å reslolution. Nature 417, 712–719 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Cheetham, G. & Steitz, T. A. Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr. Opin. Struct. Biol. 10, 117–123 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Severinov, K. T7 RNA polymerase transcription complex: what you see is not what you get. Proc. Natl Acad. Sci. USA 98, 5–7 (2000)

    Article  ADS  PubMed Central  Google Scholar 

  22. Steitz, T. A. DNA- and RNA-dependent DNA polymerases. Curr. Opin. Struct. Biol. 3, 31–38 (1993)

    Article  CAS  Google Scholar 

  23. McAllister, W. T. & Raskin, C. A. The phage RNA polymerases are related to DNA polymerases and reverse transcriptases. Mol. Microbiol. 10, 1–6 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. Temiakov, D., Anikin, M. & McAllister, W. T. Characterization of T7 RNA polymerase transcription complexes assembled on nucleic acid scaffolds. J. Biol. Chem. (in the press)

  25. Temiakov, D. et al. Crystallization and preliminary crystallographic analysis of T7 RNA polymerase elongation complex assembled on an RNA:DNA scaffold. Acta Crystallogr. (submitted)

  26. Kim, Y. et al. Crystal structure of Thermus aquaticus DNA polymerase. Nature 376, 612–616 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Raskin, C. A., Diaz, G. A. & McAllister, W. T. T7 RNA polymerase mutants with altered promoter specificities. Proc. Natl Acad. Sci. USA 90, 3147–3151 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rong, M., He, B., McAllister, W. T. & Durbin, R. K. Promoter specificity determinants of T7 RNA polymerase. Proc. Natl Acad. Sci. USA 95, 515–519 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma, K., Temiakov, D., Jiang, M., Anikin, M. & McAllister, W. T. Major conformational changes occur during the transition from an initiation complex to an elongation complex by T7 RNA polymerase. J. Biol. Chem (in the press)

  30. Mukherjee, S., Brieba, L. G. & Sousa, R. Structural transitions mediating transcription initiation by T7 RNA polymerase. Cell 110, 1–20 (2002)

    Article  Google Scholar 

  31. Mentesana, P. E., Chin-Bow, S. T., Sousa, R. & McAllister, W. T. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability. J. Mol. Biol. 302, 1049–1062 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, M., Rong, M., Martin, C. T. & McAllister, W. T. Interrupting the template strand of the T7 promoter facilitates translocation of the DNA during initiation, reducing transcript slippage and the release of abortive products. J. Mol. Biol. 310, 509–522 (2000)

    Article  Google Scholar 

  33. Bonner, G., Lafer, E. M. & Sousa, R. Characterization of a set of T7 RNA polymerase active site mutants. J. Biol. Chem. 269, 25120–25128 (1994)

    CAS  PubMed  Google Scholar 

  34. Huang, J., Brieba, L. G. & Sousa, R. Misincorporation by wild type and mutant T7 RNA polymerases: identification of interactions that reduce misincorporation rates by stabilizing the catalytically incompetent open conformation. Biochemistry 39, 11571–11580 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. Osumi-Davis, P. A., de Aguilera, M. C., Woody, R. W. & Woody, A. Y. Asp537, Asp812 are essential and Lys631, His811 are catalytically significant in bacteriophage T7 RNA polymerase activity. J. Mol. Biol. 226, 37–45 (1992)

    Article  CAS  PubMed  Google Scholar 

  36. Woody, A. Y., Osumi-Davis, P. A., Hiremath, M. M. & Woody, R. W. Pre-steady state and steady-state kinetic studies on transcription initiation catalyed by T7 RNA polymerase and its active site mutants K631R and Y639F. Biochemistry 37, 15958–15964 (1999)

    Article  Google Scholar 

  37. Imburgio, D., Rong, M., Ma, K. & McAllister, W. T. Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry 39, 10419–10430 (2000)

    Article  CAS  PubMed  Google Scholar 

  38. He, B., Rong, M., Durbin, R. K. & McAllister, W. T. A mutant T7 RNA polymerase that is defective in RNA binding and blocked in the early stages of transcription. J. Mol. Biol. 265, 275–288 (1997)

    Article  CAS  PubMed  Google Scholar 

  39. Brieba, L. G., Gopal, V. & Sousa, R. Scanning mutagenesis reveals roles for helix N of the bacteriophage T7 RNA polymerase thumb subdomain in transcription complex stability, pausing, and termination. J. Biol. Chem. 276, 10306–10313 (2000)

    Article  PubMed  Google Scholar 

  40. Lyakhov, D. L. et al. Mutant T7 RNA polymerases with altered termination properties. J. Mol. Biol. 269, 28–40 (1997)

    Article  CAS  PubMed  Google Scholar 

  41. Macdonald, L. E., Durbin, R. K., Dunn, J. J. & McAllister, W. T. Characterization of two types of termination signal for bacteriophage T7 RNA polymerase. J. Mol. Biol. 238, 145–158 (1994)

    Article  CAS  PubMed  Google Scholar 

  42. Gopal, V., Brieba, L. G., Guajardo, R., McAllister, W. T. & Sousa, R. Characterization of structural features important for T7 RNAP elongation complex stability reveals competing complex conformations and a role for the non-template strand in RNA displacement. J. Mol. Biol. 290, 411–431 (1999)

    Article  CAS  PubMed  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  45. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  46. Brunger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

  47. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  48. Esnouf, R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999)

    Article  CAS  PubMed  Google Scholar 

  49. Merrit, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)

    Article  Google Scholar 

  50. Nichols, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Kawano for assistance during the data collection at the SPring-8 synchrotron beam line, BL45. We are grateful to A. Murzin for discussions and advice concerning the analysis of the structure. This work was supported in part by grants from the NIH (USA) (W.T.M.) and the Organized Research Combination System of Science and Technology Agency (Japan) (S.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitry G. Vassylyev or Shigeyuki Yokoyama.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahirov, T., Temiakov, D., Anikin, M. et al. Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution. Nature 420, 43–50 (2002). https://doi.org/10.1038/nature01129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01129

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing