Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • How to Manage…
  • Published:

How to Manage…

How to manage lower-risk myelodysplastic syndromes

Abstract

Patients with lower-risk myelodysplastic syndromes (MDSs), usually defined as having an International Prognostic Scoring System score of 1.0 or less, and/or <5% myeloblasts, comprise the majority of newly diagnosed and established MDS patients and have a survival measured in years. Most will eventually require therapy for their disease, usually when MDS-related symptoms or transfusion requirements accelerate and outweigh potential drug-related toxicities. The decision of when to initiate therapy is far from straightforward. Erythropoiesis stimulating agents yield responses in up to 40% of appropriately selected patients, while disease-modifying drugs, including lenalidomide, azacitidine, decitabine and anti-thymocyte globulin, can evoke responses as high as 67% in patient subgroups. Newer therapies hold the promise of activity in patients who have failed standard regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982; 51: 189–199.

    Article  CAS  Google Scholar 

  2. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 Revisions of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  Google Scholar 

  3. Allampallam K, Shetty V, Mundle S, Dutt D, Kravitz H, Reddy PL et al. Biological significance of proliferation, apoptosis, cytokines, and monocyte/macrophage cells in bone marrow biopsies of 145 patients with myelodysplastic syndrome. Int J Hematol 2002; 75: 289–297.

    Article  CAS  Google Scholar 

  4. Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001; 97: 1427–1434.

    Article  CAS  Google Scholar 

  5. Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S, Takahashi M et al. Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 1997; 11: 2049–2054.

    Article  CAS  Google Scholar 

  6. Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O’Keefe C et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 2009; 113: 1315–1325.

    Article  CAS  Google Scholar 

  7. Tiu RV, Gondek LP, O’Keefe CL, Elson P, Huh J, Mohamedali A et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 2011; 117: 4552–4560.

    Article  CAS  Google Scholar 

  8. Ma X, Does M, Raza A, Mayne ST . Myelodysplastic syndromes: incidence and survival in the United States. Cancer 2007; 109: 1536–1542.

    Article  Google Scholar 

  9. Rollison DE, Howlader N, Smith MT, Strom SS, Merritt WD, Ries LA et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood 2008; 112: 45–52.

    Article  CAS  Google Scholar 

  10. Aul C, Gattermann N, Schneider W . Age-related incidence and other epidemiological aspects of myelodysplastic syndromes. Br J Haematol 1992; 82: 358–367.

    Article  CAS  Google Scholar 

  11. Maynadie M, Verret C, Moskovtchenko P, Mugneret F, Petrella T, Caillot D et al. Epidemiological characteristics of myelodysplastic syndrome in a well-defined French population. Br J Cancer 1996; 74: 288–290.

    Article  CAS  Google Scholar 

  12. McNally RJ, Rowland D, Roman E, Cartwright RA . Age and sex distributions of hematological malignancies in the UK. Hematol Oncol 1997; 15: 173–189.

    Article  CAS  Google Scholar 

  13. Radlund A, Thiede T, Hansen S, Carlsson M, Engquist L . Incidence of myelodysplastic syndromes in a Swedish population. Eur J Haematol 1995; 54: 153–156.

    Article  CAS  Google Scholar 

  14. Sekeres MA, Schoonen WM, Kantarjian H, List A, Fryzek J, Paquette R et al. Characteristics of USA patients with myelodysplastic syndromes: results of six cross-sectional physician surveys. J Natl Cancer Inst 2008; 100: 1542–1551.

    Article  Google Scholar 

  15. Kantarjian H, O’Brien S, Ravandi F, Cortes J, Shan J, Bennett JM et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer 2008; 113: 1351–1361.

    Article  CAS  Google Scholar 

  16. Malcovati L, Porta MG, Pascutto C, Invernizzi R, Boni M, Travaglino E et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol 2005; 23: 7594–7603.

    Article  Google Scholar 

  17. Sekeres MA, Maciejewski JP, List AF, Steensma DP, Artz A, Swern AS et al. Perceptions of disease state, treatment outcomes, and prognosis among patients with myelodysplastic syndromes: results from an internet-based survey. Oncologist 2011; 16: 904–911.

    Article  Google Scholar 

  18. Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Perez WS, Anasetti C et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood 2004; 104: 579–585.

    Article  CAS  Google Scholar 

  19. Casadevall N, Durieux P, Dubois S, Hemery F, Lepage E, Quarre MC et al. Health, economic, and quality-of-life effects of erythropoietin and granulocyte colony-stimulating factor for the treatment of myelodysplastic syndromes: a randomized, controlled trial. Blood 2004; 104: 321–327.

    Article  CAS  Google Scholar 

  20. Terpos E, Mougiou A, Kouraklis A, Chatzivassili A, Michalis E, Giannakoulas N et al. Prolonged administration of erythropoietin increases erythroid response rate in myelodysplastic syndromes: a phase II trial in 281 patients. Br J Haematol 2002; 118: 174–180.

    Article  CAS  Google Scholar 

  21. Musto P, Falcone A, Sanpaolo G, Bodenizza C, La Sala A, Perla G et al. Efficacy of a single, weekly dose of recombinant erythropoietin in myelodysplastic syndromes. Br J Haematol 2003; 122: 269–271.

    Article  CAS  Google Scholar 

  22. A randomized double-blind placebo-controlled study with subcutaneous recombinant human erythropoietin in patients with low-risk myelodysplastic syndromes. Italian cooperative study group for rHuEpo in myelodysplastic syndromes. Br J Haematol 1998; 103: 1070–1074.

  23. Hellstrom-Lindberg E, Gulbrandsen N, Lindberg G, Ahlgren T, Dahl IM, Dybedal I et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin+granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol 2003; 120: 1037–1046.

    Article  CAS  Google Scholar 

  24. Hellstrom-Lindberg E, Ahlgren T, Beguin Y, Carlsson M, Carneskog J, Dahl IM et al. Treatment of anemia in myelodysplastic syndromes with granulocyte colony-stimulating factor plus erythropoietin: results from a randomized phase II study and long-term follow-up of 71 patients. Blood 1998; 92: 68–75.

    CAS  Google Scholar 

  25. Negrin RS, Stein R, Doherty K, Cornwell J, Vardiman J, Krantz S et al. Maintenance treatment of the anemia of myelodysplastic syndromes with recombinant human granulocyte colony-stimulating factor and erythropoietin: evidence for in vivo synergy. Blood 1996; 87: 4076–4081.

    CAS  PubMed  Google Scholar 

  26. Casadevall N, Durieux P, Dubois S, Hemery F, Lepage E, Quarre MC et al. Health, economic, and quality-of-life effects of erythropoietin and granulocyte colony-stimulating factor for the treatment of myelodysplastic syndromes: a randomized, controlled trial. Blood 2004; 104: 321–327.

    Article  CAS  Google Scholar 

  27. Mantovani L, Lentini G, Hentschel B, Wickramanayake PD, Loeffler M, Diehl V et al. Treatment of anaemia in myelodysplastic syndromes with prolonged administration of recombinant human granulocyte colony-stimulating factor and erythropoietin. Br J Haematol 2000; 109: 367–375.

    Article  CAS  Google Scholar 

  28. Jadersten M, Montgomery SM, Dybedal I, Porwit-MacDonald A, Hellstrom-Lindberg E . Long-term outcome of treatment of anemia in MDS with erythropoietin and G-CSF. Blood 2005; 106: 803–811.

    Article  Google Scholar 

  29. Hellstrom-Lindberg E . Efficacy of erythropoietin in the myelodysplastic syndromes: a meta-analysis of 205 patients from 17 studies. Br J Haematol 1995; 89: 67–71.

    Article  CAS  Google Scholar 

  30. Jadersten M, Malcovati L, Dybedal I, Della Porta MG, Invernizzi R, Montgomery SM et al. Erythropoietin and granulocyte-colony stimulating factor treatment associated with improved survival in myelodysplastic syndrome. J Clin Oncol 2008; 26: 3607–3613.

    Article  Google Scholar 

  31. Park S, Grabar S, Kelaidi C, Beyne-Rauzy O, Picard F, Bardet V et al. Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood 2008; 111: 574–582.

    Article  CAS  Google Scholar 

  32. Golshayan AR, Jin T, Maciejewski J, Fu AZ, Bershadsky B, Kattan MW et al. Efficacy of growth factors compared to other therapies for low-risk myelodysplastic syndromes. Br J Haematol 2007; 137: 125–132.

    Article  CAS  Google Scholar 

  33. Hellstrom-Lindberg E, Negrin R, Stein R, Krantz S, Lindberg G, Vardiman J et al. Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model. Br J Haematol 1997; 99: 344–351.

    Article  CAS  Google Scholar 

  34. Hellstrom-Lindberg E, Gulbrandsen N, Lindberg G, Ahlgren T, Dahl IM, Dybedal I et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin+granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol 2003; 120: 1037–1046.

    Article  CAS  Google Scholar 

  35. Sekeres MA, Fu AZ, Maciejewski JP, Golshayan AR, Kalaycio ME, Kattan MW . A decision analysis to determine the appropriate treatment for low-risk myelodysplastic syndromes. Cancer 2007; 109: 1125–1132.

    Article  Google Scholar 

  36. Golshayan AR, Jin T, Maciejewski J, Fu AZ, Bershadsky B, Kattan MW et al. Efficacy of growth factors compared to other therapies for low-risk myelodysplastic syndromes. Br J Haematol 2007; 137: 125–132.

    Article  CAS  Google Scholar 

  37. Wei S, Chen X, Rocha K, Epling-Burnette PK, Djeu JY, Liu Q et al. A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide. Proc Natl Acad Sci USA 2009; 106: 12974–12979.

    Article  CAS  Google Scholar 

  38. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451: 335–339.

    Article  CAS  Google Scholar 

  39. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 2006; 355: 1456–1465.

    Article  CAS  Google Scholar 

  40. Sekeres MA, Maciejewski JP, Giagounidis AA, Wride K, Knight R, Raza A et al. Relationship of treatment-related cytopenias and response to lenalidomide in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 2008; 26: 5943–5949.

    Article  Google Scholar 

  41. Raza A, Reeves JA, Feldman EJ, Dewald GW, Bennett JM, Deeg HJ et al. Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 2008; 111: 86–93.

    Article  CAS  Google Scholar 

  42. Germing U, Lauseker M, Hildebrandt B, Symeonidis A, Cermak J, Pfeilstocker M et al. Survival, prognostic factors, and rates of leukemic transformation in a multicenter study of 303 untreated patients with MDS and del(5q). ASH Annual Meeting Abstracts 2009; 114: 945.

    Google Scholar 

  43. Sekeres MA, Giagounidis A, List AF, Sanz G, Selleslag D, Backstrom J et al. Predictive factors for overall survival (OS) and AML progression in a large cohort of patients with low-/Int-1-risk mds with del(5Q) treated with lenalidomide (LEN). European Haematology Association Annual Meeting 2011, 481.

  44. Kantarjian H, Fenaux P, Sekeres MA, Becker PS, Boruchov A, Bowen D et al. Safety and efficacy of romiplostim in patients with lower-risk myelodysplastic syndrome and thrombocytopenia. J Clin Oncol 2009; 28: 437–444.

    Article  Google Scholar 

  45. Sekeres MA, Kantarjian H, Fenaux P, Becker P, Boruchov A, Guerci-Bresler A et al. Subcutaneous or intravenous administration of romiplostim in thrombocytopenic patients with lower risk myelodysplastic syndromes. Cancer 2011; 117: 992–1000.

    Article  CAS  Google Scholar 

  46. Passweg JR, Giagounidis AA, Simcock M, Aul C, Dobbelstein C, Stadler M et al. Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care--SAKK 33/99. J Clin Oncol 2011; 29: 303–309.

    Article  CAS  Google Scholar 

  47. Saunthararajah Y, Nakamura R, Wesley R, Wang QJ, Barrett AJ . A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome. Blood 2003; 102: 3025–3027.

    Article  CAS  Google Scholar 

  48. Sekeres MA, Maciejewski JP, Donley DW, Grinblatt DL, Narang M, Malone III JM et al. A study comparing dosing regimens and efficacy of subcutaneous to intravenous azacitidine (AZA) for the treatment of myelodysplastic syndromes (MDS). ASH Annual Meeting Abstracts 2009; 114: 3797.

    Google Scholar 

  49. Steensma DP . The relevance of iron overload and the appropriateness of iron chelation therapy for patients with myelodysplastic syndromes: a dialogue and debate. Curr Hematol Malig Rep 2011; 6: 136–144.

    Article  Google Scholar 

  50. Steensma DP . The role of iron chelation therapy for patients with myelodysplastic syndromes. J Natl Compr Canc Netw 2011; 9: 65–75.

    Article  Google Scholar 

  51. Steensma DP . Myelodysplasia paranoia: iron as the new radon. Leuk Res 2009; 33: 1158–1163.

    Article  CAS  Google Scholar 

  52. Tefferi A, Stone RM . Iron chelation therapy in myelodysplastic syndrome—cui bono? Leukemia 2009; 23: 1373.

    Article  CAS  Google Scholar 

  53. Piga A, Galanello R, Forni GL, Cappellini MD, Origa R, Zappu A et al. Randomized phase II trial of deferasirox (Exjade, ICL670), a once-daily, orally-administered iron chelator, in comparison to deferoxamine in thalassemia patients with transfusional iron overload. Haematologica 2006; 91: 873–880.

    CAS  PubMed  Google Scholar 

  54. Raza A, Galili N, Smith S, Godwin J, Lancet J, Melchert M et al. Phase 1 multicenter dose-escalation study of ezatiostat hydrochloride (TelintraTM, TLK199 tablets), a novel glutathione analog prodrug, in patients with myelodysplastic syndrome. Blood 2009; 113: 6533–6540.

    Article  CAS  Google Scholar 

  55. Garcia-Manero G, Gore SD, Cogle CR, Jabbour EJ, Ward MR, MacBeth KJ et al. Evaluation of oral azacitidine using extended treatment schedules: a phase I study. ASH Annual Meeting Abstracts 2010; 116: 603.

    Google Scholar 

  56. Sloand EM, Olnes MJ, Shenoy A, Weinstein B, Boss C, Loeliger K et al. Alemtuzumab treatment of intermediate-1 myelodysplasia patients is associated with sustained improvement in blood counts and cytogenetic remissions. J Clin Oncol 2010; 28: 5166–5173.

    Article  CAS  Google Scholar 

  57. Kurzrock R, Angevin E, Cohen S, Van Laethem J, Rijnbeek B, Vermeulen J et al. Siltuximab treatment increases hemoglobin (Hb) levels: preliminary results from a prospective phase 1 study in refractory solid tumors. ASH Annual Meeting Abstracts 2010; 116: 5150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Sekeres.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekeres, M. How to manage lower-risk myelodysplastic syndromes. Leukemia 26, 390–394 (2012). https://doi.org/10.1038/leu.2011.223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.223

Keywords

This article is cited by

Search

Quick links