Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

The self-association coiled-coil domain of PML is sufficient for the oncogenic conversion of the retinoic acid receptor (RAR) alpha

Abstract

In acute promyelocytic leukemia (APL) the retinoic acid receptor alpha (RARα) becomes an oncogene through the fusion with several partners, mostly with promyelocytic leukemia protein (PML), all of which have in common the presence of a self-association domain. The new fusion proteins, therefore, differently from the wild-type RARα, which forms only heterodimers with retinoic X receptor alpha, are also able to homo-oligomerize. The presence of such a domain has been suggested to be crucial for the leukemogenic potential of the chimeric proteins found in APL blasts. Whether or not any self-association domain is sufficient to bestow a leukemogenic activity on RARα is still under investigation. In this work, we address this question using two different X-RARα chimeras, where X represents the coiled-coil domain of PML (CC-RARα) or the oligomerization portion of the yeast transcription factor GCN4 (GCN4–RARα). We demonstrate that in vitro both proteins have transforming potential, and recapitulate the main PML–RARα biological properties, but CC-RARα is uniquely able to disrupt PML nuclear bodies. Indeed, in vivo only the CC-RARα chimera induces efficiently APL in a murine transplantation model. Thus, the PML CC domain represents the minimal structural determinant indispensable to transform RARα into an oncogenic protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Minucci S, Monestiroli S, Giavara S, Ronzoni S, Marchesi F, Insinga A et al. PML-RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 2002; 100: 2989–2995.

    Article  CAS  Google Scholar 

  2. Warrell Jr RP, de The H, Wang ZY, Degos L . Acute promyelocytic leukemia. N Engl J Med 1993; 329: 177–189.

    Article  CAS  Google Scholar 

  3. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684.

    Article  CAS  Google Scholar 

  4. Kakizuka A, Miller Jr WH, Umesono K, Warrell Jr RP, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.

    Article  CAS  Google Scholar 

  5. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 1993; 12: 1161–1167.

    Article  CAS  Google Scholar 

  6. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996; 87: 882–886.

    CAS  Google Scholar 

  7. Wells RA, Catzavelos C, Kamel-Reid S . Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet 1997; 17: 109–113.

    Article  CAS  Google Scholar 

  8. Arnould C, Philippe C, Bourdon V, Gr goire MJ, Berger R, Jonveaux P . The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet 1999; 8: 1741–1749.

    Article  CAS  Google Scholar 

  9. Kamashev D, Vitoux D, De The H . PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med 2004; 199: 1163–1174.

    Article  CAS  Google Scholar 

  10. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815–818.

    Article  CAS  Google Scholar 

  11. Minucci S, Nervi C, Lo Coco F, Pelicci PG . Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene 2001; 20: 3110–3115.

    Article  CAS  Google Scholar 

  12. Carbone R, Botrugno OA, Ronzoni S, Insinga A, Di Croce L, Pelicci PG et al. Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol 2006; 26: 1288–1296.

    Article  CAS  Google Scholar 

  13. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295: 1079–1082.

    Article  CAS  Google Scholar 

  14. Melnick A, Licht JD . Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  15. Kwok C, Zeisig BB, Dong S, So CW . Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell 2006; 9: 95–108.

    Article  CAS  Google Scholar 

  16. Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, Silletto A et al. Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 2006; 9: 81–94.

    Article  CAS  Google Scholar 

  17. Zhou J, Peres L, Honore N, Nasr R, Zhu J, de The H . Dimerization-induced corepressor binding and relaxed DNA-binding specificity are critical for PML/RARA-induced immortalization. Proc Natl Acad Sci USA 2006; 103: 9238–9243.

    Article  CAS  Google Scholar 

  18. Jensen K, Shiels C, Freemont PS . PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001; 20: 7223–7233.

    Article  CAS  Google Scholar 

  19. Grignani F, Gelmetti V, Fanelli M, Rogaia D, De Matteis S, Ferrara FF et al. Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAR alpha-mediated retinoic acid response. Oncogene 1999; 18: 6313–6321.

    Article  CAS  Google Scholar 

  20. Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 2000; 5: 811–820.

    Article  CAS  Google Scholar 

  21. Nervi C, Poindexter EC, Grignani F, Pandolfi PP, Lo Coco F, Avvisati G et al. Characterization of the PML-RAR alpha chimeric product of the acute promyelocytic leukemia-specific t(15;17) translocation. Cancer Res 1992; 52: 3687–3692.

    CAS  PubMed  Google Scholar 

  22. Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S et al. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 2007; 12: 36–51.

    Article  CAS  Google Scholar 

  23. Zhu J, Nasr R, Peres L, Riaucoux-Lormiere F, Honore N, Berthier C et al. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 2007; 12: 23–35.

    Article  CAS  Google Scholar 

  24. Grignani F, Kinsella T, Mencarelli A, Valtieri M, Riganelli D, Lanfrancone L et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res 1998; 58: 14–19.

    CAS  Google Scholar 

  25. Harbury PB, Zhang T, Kim PS, Alber T . A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 1993; 262: 1401–1407.

    Article  CAS  Google Scholar 

  26. Weissenhorn W, Calder LJ, Dessen A, Laue T, Skehel JJ, Wiley DC . Assembly of a rod-shaped chimera of a trimeric GCN4 zipper and the HIV-1 gp41 ectodomain expressed in Escherichia coli. Proc Natl Acad Sci USA 1997; 94: 6065–6069.

    Article  CAS  Google Scholar 

  27. Grignani F, Testa U, Rogaia D, Ferrucci PF, Samoggia P, Pinto A et al. Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J 1996; 15: 4949–4958.

    Article  CAS  Google Scholar 

  28. Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 2003; 102: 1857–1865.

    Article  CAS  Google Scholar 

  29. Zhu J, Zhou J, Peres L, Riaucoux F, Honore N, Kogan S et al. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 2005; 7: 143–153.

    Article  CAS  Google Scholar 

  30. Guibal FC, Alberich-Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A et al. Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood 2009; 114: 5415–5425.

    Article  CAS  Google Scholar 

  31. Wojiski S, Guibal FC, Kindler T, Lee BH, Jesneck JL, Fabian A et al. PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia 2009; 23: 1462–1471.

    Article  CAS  Google Scholar 

  32. Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci U S A 1997; 94: 2551–2556.

    Article  CAS  Google Scholar 

  33. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 1997; 89: 376–387.

    CAS  Google Scholar 

  34. Rego EM, Wang ZG, Peruzzi D, He LZ, Cordon-Cardo C, Pandolfi PP . Role of promyelocytic leukemia (PML) protein in tumor suppression. J Exp Med 2001; 193: 521–529.

    Article  CAS  Google Scholar 

  35. Insinga A, Monestiroli S, Ronzoni S, Carbone R, Pearson M, Pruneri G et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J 2004; 23: 1144–1154.

    Article  CAS  Google Scholar 

  36. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453: 1072–1078.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Massimo Stendardo, Manuela Capillo and the IFOM-IEO Campus mouse-service for the help with mice; tissue culture, sequencing, imaging and molecular pathology facilities for the technical assistance; Francesca Refaldi, Marco Sconfietti, Chiara Saccomanni and Anna Sciullo for cell sorting and FACS analysis; Sebastiano Pasqualato for SEC experiments. We thank Winfried Weissenhorn for the gift of the GCN4 encoding plasmid. We are grateful to Andrea Musacchio, Claudio Ciferri and Oronzina Botrugno for helpful discussions; Francesca De Franco, Roberto Dal Zuffo, Alessandra Marinelli, Virginia Giuliani, Sara Barozzi, and Mauro Romanenghi for technical support. Work in SM lab is supported by: AIRC, EEC (Epitron), Cariplo, MIUR, MiS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Santoro or S Minucci.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Occhionorelli, M., Santoro, F., Pallavicini, I. et al. The self-association coiled-coil domain of PML is sufficient for the oncogenic conversion of the retinoic acid receptor (RAR) alpha. Leukemia 25, 814–820 (2011). https://doi.org/10.1038/leu.2011.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.18

Keywords

This article is cited by

Search

Quick links