Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Imatinib sensitivity as a consequence of a CSF1R-Y571D mutation and CSF1/CSF1R signaling abnormalities in the cell line GDM1

Abstract

Imatinib is usually a highly effective treatment for myeloproliferative neoplasms (MPNs) associated with ABL, PDGFRA or PDGFRB gene fusions; however, occasional imatinib-responsive patients have been reported without abnormalities of these genes. To identify novel imatinib-sensitive lesions, we screened 11 BCR-ABL-negative cell lines and identified GDM1, derived from a patient with an atypical MPN (aMPN), as being responsive to imatinib. Screening of genes encoding known imatinib targets revealed an exon 12 mutation in the colony-stimulating factor 1 receptor (CSF1R; c-FMS) with a predicted Y571D amino-acid substitution. CSF1R in GDM1 was constitutively phosphorylated, but rapidly dephosphorylated on exposure to imatinib. Y571D did not transform FDCP1 cells to growth factor independence, but resulted in a significantly increased colony growth compared with controls, constitutive CSF1R phosphorylation and elevated CSF1R signaling. We found that GDM1 expresses CSF1, and CSF1 neutralization partially inhibited proliferation, suggesting the importance of both autocrine and intrinsic mechanisms of CSF1R activation. An extensive screen of CSF1R in aMPNs and acute myeloid leukemia identified three additional novel missense variants. None of these variants were active in transformation assays and are therefore likely to be previously unreported rare polymorphisms or non-pathogenic passenger mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295: 139–145.

    CAS  PubMed  Google Scholar 

  2. Okuda K, Weisberg E, Gilliland DG, Griffin JD . ARG tyrosine kinase activity is inhibited by STI571. Blood 2001; 97: 2440–2448.

    Article  CAS  PubMed  Google Scholar 

  3. Dewar AL, Cambareri AC, Zannettino AC, Miller BL, Doherty KV, Hughes TP et al. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood 2005; 105: 3127–3132.

    Article  CAS  PubMed  Google Scholar 

  4. Deininger M, Buchdunger E, Druker BJ . The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640–2653.

    Article  CAS  PubMed  Google Scholar 

  5. Pardanani A, Ketterling RP, Li CY, Patnaik MM, Wolanskyj AP, Elliott MA et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res 2006; 30: 965–970.

    Article  CAS  PubMed  Google Scholar 

  6. David M, Cross NC, Burgstaller S, Chase A, Curtis C, Dang R et al. Durable responses to Imatinib in patients with PDGFRB fusion gene positive and BCR-ABL negative chronic myeloproliferative disorders. Blood 2007; 109: 61–64.

    Article  CAS  PubMed  Google Scholar 

  7. Drexler H . The Leukemia-Lymphoma Cell Line Facts Book. Academic Press: San Diego, CA, 2000.

    Google Scholar 

  8. Cross NC, Melo JV, Feng L, Goldman JM . An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 1994; 8: 186–189.

    CAS  PubMed  Google Scholar 

  9. Crescenzi B, Chase A, Starza RL, Beacci D, Rosti V, Galli A et al. FIP1L1-PDGFRA in chronic eosinophilic leukemia and BCR-ABL1 in chronic myeloid leukemia affect different leukemic cells. Leukemia 2007; 21: 397–402.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang LY, Smith ML, Schultheis B, Fitzgibbon J, Lister TA, Melo JV et al. A novel K509I mutation of KIT identified in familial mastocytosis—in vitro and in vivo responsiveness to imatinib therapy. Leuk Res 2006; 30: 373–378.

    Article  CAS  PubMed  Google Scholar 

  11. Score J, Curtis C, Waghorn K, Stalder M, Jotterand M, Grand FH et al. Identification of a novel imatinib responsive KIF5B-PDGFRA fusion gene following screening for PDGFRA overexpression in patients with hypereosinophilia. Leukemia 2006; 20: 827–832.

    Article  CAS  PubMed  Google Scholar 

  12. Heath C, Cross NC . Critical role of STAT5 activation in transformation mediated by ZNF198-FGFR1. J Biol Chem 2004; 279: 6666–6673.

    Article  CAS  PubMed  Google Scholar 

  13. Dibb NJ, Green SM, Ralph P . Expression of v-fms and c-fms in the hemopoietic cell line FDC-P1. Growth Factors 1990; 2: 301–311.

    Article  CAS  PubMed  Google Scholar 

  14. Hawley RG, Lieu FH, Fong AZ, Goldman SJ, Leonard JP, Hawley TS . Retroviral vectors for production of interleukin-12 in the bone marrow to induce a graft-versus-leukemia effect. Ann NY Acad Sci 1996; 795: 341–345.

    Article  CAS  PubMed  Google Scholar 

  15. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90: 8392–8396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beghini A, Magnani I, Ripamonti CB, Larizza L . Amplification of a novel c-Kit activating mutation Asn(822)-Lys in the Kasumi-1 cell line: a t(8;21)-Kit mutant model for acute myeloid leukemia. Hematol J 2002; 3: 157–163.

    Article  CAS  PubMed  Google Scholar 

  17. Nagel S, Kaufmann M, Scherr M, Drexler HG, MacLeod RA . Activation of HLXB9 by juxtaposition with MYB via formation of t(6;7)(q23;q36) in an AML-M4 cell line (GDM-1). Genes Chromosomes Cancer 2005; 42: 170–178.

    Article  CAS  PubMed  Google Scholar 

  18. Baker DA, Glover HR, Dibb NJ . Synergy between SCF or M-CSF with IL-3 or GM-CSF in FDC-P1 cells: a sensitive assay of transforming mutations of c-fms. Leukemia 1994; 8: 141–150.

    CAS  PubMed  Google Scholar 

  19. Glover HR, Baker DA, Celetti A, Dibb NJ . Selection of activating mutations of c-fms in FDC-P1 cells. Oncogene 1995; 11: 1347–1356.

    CAS  PubMed  Google Scholar 

  20. Xiang Z, Zhao Y, Mitaksov V, Fremont DH, Kasai Y, Molitoris A et al. Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Blood 2008; 111: 4809–4812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abu-Duhier FM, Goodeve AC, Care RS, Gari M, Wilson GA, Peake IR et al. Mutational analysis of class III receptor tyrosine kinases (C-KIT, C-FMS, FLT3) in idiopathic myelofibrosis. Br J Haematol 2003; 120: 464–470.

    Article  CAS  PubMed  Google Scholar 

  22. Abu-Duhier FM, Goodeve AC, Wilson GA, Peake IR, Reilly JT . c-FMS mutational analysis in acute myeloid leukaemia. Br J Haematol 2003; 123: 749–750.

    Article  PubMed  Google Scholar 

  23. van Daalen WT, Hawkins SA, Roussel MF, Sherr CJ . Random mutagenesis of CSF-1 receptor (FMS) reveals multiple sites for activating mutations within the extracellular domain. EMBO J 1992; 11: 551–557.

    Article  Google Scholar 

  24. Gu TL, Mercher T, Tyner JW, Goss VL, Walters DK, Cornejo MG et al. A novel fusion of RBM6 to CSF1R in acute megakaryoblastic leukemia. Blood 2007; 110: 323–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ben-Bassat H, Korkesh A, Voss R, Leizerowitz R, Polliack A . Establishment and characterization of a new permanent cell line (GDM-1) from a patient with myelomonoblastic leukemia. Leuk Res 1982; 6: 743–752.

    Article  CAS  PubMed  Google Scholar 

  26. Walter M, Lucet IS, Patel O, Broughton SE, Bamert R, Williams NK et al. The 2.7 A crystal structure of the autoinhibited human c-Fms kinase domain. J Mol Biol 2007; 367: 839–847.

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Covino ND, Stein EG, Till JH, Hubbard SR . Structural and biochemical evidence for an autoinhibitory role for tyrosine 984 in the juxtamembrane region of the insulin receptor. J Biol Chem 2003; 278: 26007–26014.

    Article  CAS  PubMed  Google Scholar 

  28. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F . Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 2001; 106: 745–757.

    Article  CAS  PubMed  Google Scholar 

  29. Myles GM, Brandt CS, Carlberg K, Rohrschneider LR . Tyrosine 569 in the c-Fms juxtamembrane domain is essential for kinase activity and macrophage colony-stimulating factor-dependent internalization. Mol Cell Biol 1994; 14: 4843–4854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Irusta PM, Luo Y, Bakht O, Lai CC, Smith SO, DiMaio D . Definition of an inhibitory juxtamembrane WW-like domain in the platelet-derived growth factor beta receptor. J Biol Chem 2002; 277: 38627–38634.

    Article  CAS  PubMed  Google Scholar 

  31. Dibb NJ, Dilworth SM, Mol CD . Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nat Rev Cancer 2004; 4: 718–727.

    Article  CAS  PubMed  Google Scholar 

  32. Frohling S, Scholl C, Levine RL, Loriaux M, Boggon TJ, Bernard OA et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell 2007; 12: 501–513.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research supported by Leukaemia Research, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Chase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chase, A., Schultheis, B., Kreil, S. et al. Imatinib sensitivity as a consequence of a CSF1R-Y571D mutation and CSF1/CSF1R signaling abnormalities in the cell line GDM1. Leukemia 23, 358–364 (2009). https://doi.org/10.1038/leu.2008.295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.295

Keywords

This article is cited by

Search

Quick links