Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

The susceptibility of three strains of Chinese minipigs to diet-induced type 2 diabetes mellitus

Abstract

Researchers have extensively used animal models to study diabetes mellitus. In this study, the authors determined the susceptibility of three strains of Chinese minipigs to diet-induced type 2 diabetes mellitus. For 8 months, the researchers fed Nongda control minipigs (n = 4) a normal diet and fed Bama, Wuzhishan and Nongda minipigs (n = 6 per group) a high-sucrose, high-fat diet. They measured the minipigs' body weights, fasting serum glucose concentrations and insulin concentrations each month. Every 2 months, they measured serum triglyceride, cholesterol, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels and carried out intravenous glucose tolerance tests (IVGTTs). The Bama and Wuzhishan minipigs were relatively susceptible to diabetes induced by the high-sucrose, high-fat diet, though susceptibility differed among individual animals in the same strain. On the other hand, Nongda minipigs were relatively resistant to diet-induced diabetes. These results provide a foundation for diabetes-related genetic analyses in minipigs with high and low susceptibility to diet-induced type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Sale, M.M. & Rich, S.S. Genetic contributions to type 2 diabetes: recent insights. Expert Rev. Mol. Diagn. 7, 207–217 (2007).

    Article  CAS  Google Scholar 

  2. Rees, D.A. & Alcolado, J.C. Animal models of diabetes mellitus. Diabet. Med. 22, 359–375 (2005).

    Article  CAS  Google Scholar 

  3. Swindle, M.M. ed. Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques 2nd edn. (CRC, Boca Raton, FL, 2007).

    Book  Google Scholar 

  4. Zhang, D.F. & Liu, D. International research for minipig as experimental animal. Bull. Biol. 39, 14–16 (2004).

    Google Scholar 

  5. Pei, D.Z. Brief description of the experimental animal science and management for Chinese experimental minipig. Laboratory Animal Science and Administration 14, 36–37 (1997).

    Google Scholar 

  6. Mather, K.J. et al. Repeatability characteristics of simple indices of insulin resistance: implications for research applications. J. Clin. Endocrinol. Metab. 86, 5457–5464 (2001).

    Article  CAS  Google Scholar 

  7. Matthews, D.R. et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article  CAS  Google Scholar 

  8. Katz, A. et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85, 2402–2410 (2000).

    Article  CAS  Google Scholar 

  9. Kadowaki, T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J. Clin. Invest. 106, 459–465 (2000).

    Article  CAS  Google Scholar 

  10. Schatz, D., Gale, E.A. & Atkinson, M.A. Why can't we prevent type 1 diabetes? Maybe it's time to try a different combination. Diabetes Care 26, 3326–3328 (2003).

    Article  Google Scholar 

  11. Bellinger, D.A., Merricks, E.P. & Nichols, T.C. Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J 47, 243–258 (2006).

    Article  CAS  Google Scholar 

  12. Larsen, M.O. & Rolin, B. Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J 45, 303–313 (2004).

    Article  CAS  Google Scholar 

  13. Johansen, T., Hansen, H.S., Richelsen, B. & Malmlöf, R. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp. Med. 51, 150–155 (2001).

    CAS  PubMed  Google Scholar 

  14. Larsen, M.O., Rolin, B., Wilken, M., Carr, R.D. & Svendsen, O. High-fat high-energy feeding impairs fasting glucose and increases fasting insulin levels in the Göttingen minipig: results from a pilot study. Ann. N. Y. Acad. Sci. 967, 414–423 (2006).

    Article  Google Scholar 

  15. Kaufman, F.R. Type 2 diabetes in children and youth. Endocrinol. Metab. Clin. North Am. 34, 659–676 ix–x (2005).

    Google Scholar 

  16. Winzell, M.S. & Ahrén, B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53, S215–S219 (2004).

    Article  Google Scholar 

  17. Huang, B.W., Chiang, M.T., Yao, H.T. & Chiang, W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes. Metab. 6, 120–126 (2004).

    CAS  Google Scholar 

  18. Yao, F. et al. The establishment of animal model of Guizhou minipig with type 2 diabetes mellitus. J. Nanhua University (Medical Edition) 32, 294–297 (2004).

    Google Scholar 

  19. Xi, S. et al. A minipig model of high-fat/high-sucrose diet-induced diabetes and atherosclerosis. Int. J. Exp. Path. 85, 223–231 (2004).

    Article  Google Scholar 

  20. Dyson, M.C., Alloosh, M., Vuchetich, J.P., Mokelke, E.A. & Sturek, M. Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp. Med. 56, 35–45 (2006).

    CAS  Google Scholar 

  21. Bratz, I.N. et al. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol. 294, H2489–H2496 (2008).

    Article  CAS  Google Scholar 

  22. Sturek, M. et al. Ossabaw Island miniature swine: cardiometabolic syndrome assessment. in Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques 2nd edn. (ed. Swindle, M.M.) 397–429 (CRC, Boca Raton, FL, 2007).

    Chapter  Google Scholar 

  23. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 28, S37–S42 (2005).

  24. Ellegaard, L., Jørgensen, K.D., Klastrup, S., Hansen, A.K. & Svendson, O. Haematologic and clinical chemical values in 3 and 6 month old Göttingen minipigs. Scand. J. Lab. Anim. Sci. 22, 239–248 (1995).

    Google Scholar 

  25. Wang, A.D. The select breeding of the Guangxi Bama minipig. J. Chinese Comp. Med. 14, 160–162 (2004).

    Google Scholar 

  26. Feng, S.T. & Chen, Y.C. Studies on the biological characteristics, ex situ breeding and genetic diversity of Wuzhishan Pig. Chinese Biodiversity 6, 172–179 (1998).

    Google Scholar 

  27. Zheng, Y. The result of “development of experimental inbred WUZHISHAN pig and basic research of molecular genetics” passed identification. Chinese J. Anim. Vet. Sci. 5, 421 (2005).

    Google Scholar 

  28. Yu, S.M., Wang, C.W., Zhao, D.M., Zhang, Q.C. & Pei, D.Z. The breeding of Chinese experiment minipig and its decontaminate. Laboratory Animal Science and Administration 20, 44–46 (2003).

    Google Scholar 

  29. Gan, S.X., Qian, N., Feng, J.F. & Dong, F.L. Introduction. in Atlas of Histology for Guizhou Minipig. (Guizhou Science and Technology Press, Guiyang, China, 2001).

    Google Scholar 

  30. Phillips, R.W., Westmoreland, N., Panepinto, L. & Case, G.L. Dietary effects on metabolism of Yucatan miniature swine selected for low and high glucose utilization. J. Nutr. 112, 104–111 (1981).

    Article  Google Scholar 

  31. Phillips, R.W., Panepinto, L.M. & Will, D.H. Genetic selection for diabetogenic traits in Yucatan miniature swine. Diabetes 28, 1102–1107 (1979).

    Article  CAS  Google Scholar 

  32. Hand, M.S., Surwit, R.S., Rodin, J., Van Order, P. & Feinglos, M.N. Failure of genetically selected miniature swine to model NIDDM. Diabetes 36, 284–287 (1987).

    Article  CAS  Google Scholar 

  33. Boullion, R.D. et al. Porcine model of diabetic dyslipidemia: insulin and feed algorithms for mimicking diabetes in humans. Comp. Med. 53, 42–52 (2003).

    CAS  PubMed  Google Scholar 

  34. Otis, C.R., Wamhoff, B.R. & Sturek, M. Hyperglycemia-induced insulin resistance in diabetic dyslipidemic Yucatan swine. Comp. Med. 53, 53–64 (2003).

    CAS  PubMed  Google Scholar 

  35. Gerrity, R.G., Natarajan, R., Nadler, J.L. & Kimsey, T. Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50, 1654–1665 (2001).

    Article  CAS  Google Scholar 

  36. Zhu, H.X., Su, B.Y. & Ying, D.J. Introduction. in Anatomic Histology of Banna Minipig Inbred-lines 1–5 (Higher Education, Beijing, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Liu, Yq., Li, Ch. et al. The susceptibility of three strains of Chinese minipigs to diet-induced type 2 diabetes mellitus. Lab Anim 38, 355–363 (2009). https://doi.org/10.1038/laban1109-355

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban1109-355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing