Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Using Obese Mouse Models in Research: Special Considerations for IACUC Members, Animal Care Technicians, and Researchers

Abstract

The mouse is the animal most commonly used to study the underlying causes of and treatments for obesity. The author reviews many of the issues that should be considered by all involved in research with mice expressing this phenotype, and describes some procedures exclusive to obesity research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wire-grid hanging cages.
Figure 2: Core body temperature measurement in an obese mouse.
Figure 3: Running-wheel cages.

Similar content being viewed by others

References

  1. Snyder, E.E. et al. The human obesity gene map: the 2003 update. Obes. Res. 12(3), 369–439 (2004).

    Article  Google Scholar 

  2. Arch, J.R. Lessons in obesity from transgenic animals. J. Endocrinol. Invest. 25(10), 867–875 (2002).

    Article  Google Scholar 

  3. Brockmann, G.A. & Bevova, M.R. Using mouse models to dissect the genetics of obesity. Trends Genet. 18(7), 367–376 (2002).

    Article  Google Scholar 

  4. Mauvais-Jarvis, F., Kulkarni, R.N. & Kahn, C.R. Knockout models are useful tools to dissect the pathophysiology and genetics of insulin resistance. Clin. Endocrinol. (Oxf.) 57(1), 1–9 (2002).

    Article  Google Scholar 

  5. Tschop, M. & Heiman, M.L. Rodent obesity models: an overview. Exp. Clin. Endocrinol. Diabetes 109(6), 307–319 (2001).

    Article  Google Scholar 

  6. Robinson, S.W., Dinulescu, D.M. & Cone, R.D. Genetic models of obesity and energy balance in the mouse. Annu. Rev. Genet. 34, 687–745 (2000).

    Article  CAS  Google Scholar 

  7. Beck, B. KO's and organisation of peptidergic feeding behavior mechanisms. Neurosci. Biobehav. Rev. 25(2), 143–158 (2001).

    Article  Google Scholar 

  8. Russell, W.M.S. & Burch, R.L. The Principles of Humane Experimental Technique (Methuen, London, 1959).

    Google Scholar 

  9. Magni, P., Motta, M. & Martini, L. Leptin: a possible link between food intake, energy expenditure, and reproductive function. Regul. Pept. 92(1–3), 51–56 (2000).

    Article  Google Scholar 

  10. Good, D.J., Porter, F.D., Mahon, K.A., Parlow, A.F., Westphal, H. & Kirsch, I.R. Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nat. Genet. 15(4), 397–401 (1997).

    Article  Google Scholar 

  11. Johnson, S.A., Marin-Bivens, C.L., Miele, M., Coyle, C.A., Fissore, R. & Good, D.J. The Nhlh2 transcription factor is required for female sexual behavior and reproductive longevity. Horm. Behav. 46(4), 420–427 (2004).

    Article  Google Scholar 

  12. Institute for Laboratory Animal Research, National Research Council. Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research (National Academies Press, Washington, DC, 2003).

  13. Chua, S.C. Jr. et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271(5251), 994–996 (1996).

    Article  Google Scholar 

  14. Lee, G.H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379(6566), 632–635 (1996).

    Article  Google Scholar 

  15. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84(3), 491–495 (1996).

    Article  Google Scholar 

  16. Coleman, D.L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14(3), 141–148 (1978).

    Article  Google Scholar 

  17. Yamashita, H., Shao, J., Qiao, L., Pagliassotti, M. & Friedman, J.E. Effect of spontaneous gestational diabetes on fetal and postnatal hepatic insulin resistance in Lepr(db/+) mice. Pediatr. Res. 53(3), 411–418 (2003).

    Article  Google Scholar 

  18. Dhar, M.S. et al. Mice heterozygous for Atp10c, a putative amphipath, represent a novel model of obesity and type 2 diabetes. J. Nutr. 134(4), 615–623 (2000).

    Google Scholar 

  19. Yu, S. et al. Paternal versus maternal transmission of a stimulatory G-protein α-subunit knockout produces opposite effects on energy metabolism. J. Clin. Invest. 105(5), 615–623 (2000).

    Article  Google Scholar 

  20. Manser, C.E., Morris, T.H. & Broom, D.M. An investigation into the effects of solid or grid cage flooring on the welfare of laboratory rats. Lab. Anim. 29(4), 353–363 (1995).

    Article  Google Scholar 

  21. Institute of Laboratory Animal Resources, National Research Council. Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, DC, 1996).

  22. Leiter, E.H. Mice with targeted gene disruptions or gene insertions for diabetes research: problems, pitfalls, and potential solutions. Diabetologia 45(3), 296–308 (2002).

    Article  Google Scholar 

  23. Zochodne, D.W., Murray, M.M., van der Sloot, P. & Riopelle, R.J. Distal tibial mononeuropathy in diabetic and nondiabetic rats reared on wire cages: an experimental entrapment neuropthy. Brain Res. 698(1–2), 130–136 (1995).

    Article  Google Scholar 

  24. Ader, D.N., Johnson, S.B., Huang, S.W. & Riley, W.J. Group size, cage shelf level, and emotionality in non-obese diabetic mice: impact on onset and incidence of IDDM. Psychosom. Med. 53(3), 313–321 (1991).

    Article  Google Scholar 

  25. Nagy, T.R., Krzywanski, D., Li, J., Meleth, S. & Desmond, R. Effect of group vs. single housing on phenotypic variance in C57BL/6J mice. Obes. Res. 10(5), 412–415 (2002).

    Article  Google Scholar 

  26. Leiter, E.H. Control of spontaneous glucose intolerance, hyperinsulinemia, and islet hyperplasia in nonobese C3H.SW male mice by Y-linked locus and adrenal gland. Metabolism 37(7), 689–696 (1988).

    Article  Google Scholar 

  27. Van Loo, P.L., Van de Weerd, H.A., Van Zutphen, L.F. & Baumans, V. Preference for social contact versus environmental enrichment in male laboratory mice. Lab. Anim. 38(2), 178–188 (2004).

    Article  Google Scholar 

  28. Borer, K.T., Pryor, A., Conn, C.A., Bonna, R. & Kielb, M. Group housing accelerates growth and induces obesity in adult hamsters. Am. J. Physiol. 255(1 Pt 2), R128–133 (1988).

    Google Scholar 

  29. Greenman, D.L., Bryant, P., Kodell, R.L. & Sheldon, W. Relationship of mouse body weight and food consumption/wastage to cage shelf level. Lab. Anim. Sci. 33(6), 555–558 (1983).

    Google Scholar 

  30. Trayhurn, P. & James, W.P. Thermoregulation and non-shivering thermogenesis in the genetically obese (ob/ob) mouse. Pflugers Arch. 373(2), 189–193 (1978).

    Article  Google Scholar 

  31. Trayhurn, P. Thermoregulation in the diabetic-obese (db/db) mouse. The role of non-shivering thermogenesis in energy balance. Pflugers Arch. 380(3), 227–232 (1979).

    Article  Google Scholar 

  32. Trayhurn, P. & Fuller, L. The development of obesity in genetically diabetic-obese (db/db) mice pair-fed with lean siblings. The importance of thermoregulatory thermogenesis. Diabetologia 19(2), 148–153 (1980).

    Article  Google Scholar 

  33. Augustsson, H., van de Weerd, H.A., Kruitwagen, C.L. & Baumans, V. Effect of enrichment on variation and results in the light/dark test. Lab. Anim. 37(4), 328–340 (2003).

    Article  Google Scholar 

  34. Naveilhan, P., Canals, J.M., Valjakka, A., Vartiainen, J., Arenas, E. & Ernfors, P. Neuropeptide Y alters sedation through a hypothalamic Y1-mediated mechanism. Eur. J. Neurosci. 13(12), 2241–2246 (2001).

    Article  Google Scholar 

  35. Naveilhan, P., Canals, J.M., Arenas, E. & Ernfors, P. Distinct roles of the Y1 and Y2 receptors on neuropeptide Y-induced sensitization to sedation. J. Neurochem. 78(6), 1201–1207 (2001).

    Article  Google Scholar 

  36. Kushi, A., Sasai, H., Koizumi, H., Takeda, N., Yokoyama, M. & Nakamura, M. Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice. Proc. Natl. Acad. Sci. USA 95(26), 15659–15664 (1998).

    Article  Google Scholar 

  37. Naveilhan, P. et al. Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. Nat. Med. 5(10), 1188–1193 (1999).

    Article  Google Scholar 

  38. Kohn, D.F. Anesthesia and Analgesia in Laboratory Animals (Academic Press, San Diego, 1997).

    Google Scholar 

  39. Morton, D.B. A systematic approach for establishing humane endpoints. ILAR J. 41(2), 80–86 (2000).

    Article  Google Scholar 

  40. Sieber, F.E. & Traystman, R.J. Ethical issues involved in the development of animal models for type 1 diabetes. ILAR J. 35(1), (1993).

  41. O'Donnell, C.P., Tandersley, C.G., Polotsky, V.P., Schwartz, A.R. & Smith, P.L. Leptin, obesity, and respiratory function. Respir. Physiol. 119(2–3), 163–170 (2000).

    Article  Google Scholar 

  42. Hall, J.E., Brans, M.W., Hildebrandt, D.A. & Mizelle, H.L. Obesity-associated hypertension. Hyperinsulinemia and renal mechanisms. Hypertension 19(1 Suppl), I45–55 (1992).

    Article  CAS  Google Scholar 

  43. Coyle, C.A., Jing, E., Hosmer, T., Powers, J.B., Wade, G. & Good, D.J. Reduced voluntary activity precedes adult-onset obesity in Nhlh2 knockout mice. Physiol. Behav. 77(2–3), 387–402 (2002).

    Article  Google Scholar 

  44. Rajala, M.W. et al. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 53(7), 1671–1679 (2004).

    Article  Google Scholar 

  45. Makimura, H., Mizuno, T.M., Isoda, F., Beasley, J., Silverstein, J.H. & Mobbs, C.V. Role of glucocorticoids in mediating effects of fasting and diabetes on hypothalamic gene expression. BMC Physiol. 3(1), 5 (2003).

    Article  Google Scholar 

  46. Dubuc, P.U., Cahn, P.J., Ristimaki, S. & Willis, P.L. Starvation and age effects on glycoregulation and hormone levels of C57BL/6J ob/ob mice. Horm. Metab. Res. 14(10), 532–535 (1982).

    Article  Google Scholar 

  47. Maglich, J.M., Watson, J., McMillen, P.J., Goodwin, B., Willson, T.M. & Moore, J.T. The nuclear receptor CAR is a regulator of thyroid hormone metabolism during caloric restriction. J. Biol. Chem. 279(19), 19832–19838 (2004).

    Article  Google Scholar 

  48. Gao, J., Ghibaudi, L. & Hwa, J.J. Selective activation of central NPY Y1 vs. Y5 receptor elicits hyperinsulinemia via distinct mechanisms. Am. J. Physiol. Endocrinol. Metab. 287(4), E706–711 (2004).

    Article  Google Scholar 

  49. Overton, J.M. & Williams, T.D. Behavioral and physiologic responses to caloric restriction in mice. Physiol. Behav. 81(5), 749–754 (2004).

    Article  Google Scholar 

  50. Lowell, B.B. & Bachman, E.S. β-Adrenergic receptors, diet-induced thermogenesis, and obesity. J. Biol. Chem. 278(32), 29385–29388 (2003).

    Article  Google Scholar 

  51. Cabanac, A. & Briese, E. Handling elevates the colonic temperature of mice. Physiol. Behav. 51(1), 95–98 (1992).

    Article  Google Scholar 

  52. Zethof, T.J., Van der Heyden, J.A., Tolboom, J.T. & Olivier, B. Stress-induced hyperthermia in mice: a methodological study. Physiol. Behav. 55(1), 109–115 (1994).

    Article  Google Scholar 

  53. Jimenez, M. et al. β(1)/β(2)/β(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett. 530(1–3), 37–40 (2002).

    Article  Google Scholar 

  54. Chen, H.C., Ladha, Z., Smith, S.J. & Farese, R.V., Jr. Analysis of energy expenditure at different ambient temperatures in mice lacking DGAT1. Am. J. Physiol. Endocrinol. Metab. 284(1), E213–218 (2003).

    Article  Google Scholar 

  55. Webb, G.P., Jagot, S.A. & Jakobson, M.E. Fasting-induced torpor in Mus musculus and its implications in the use of murine models for human obesity studies. Comp. Biochem. Physiol. A. 72(1), 211–219 (1982).

    Article  Google Scholar 

  56. Ste Marie, L., Miura, G.I., Marsh, D.J., Yagaloff, K. & Palmiter, R.D. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc. Natl. Acad. Sci. USA 97(22), 12339–12344 (2000).

    Article  Google Scholar 

  57. Dauncey, M.J. & Brown, D. Role of activity-induced thermogenesis in twenty-four hour energy expenditure of lean and genetically obese (ob/ob) mice. Q. J. Exp. Physiol. 72(4), 549–559 (1987).

    Article  Google Scholar 

  58. Holmes, B. & Dohm, G.L. Regulation of GLUT4 gene expression during exercise. Med. Sci. Sports Exerc. 36(7), 1202–1206 (2004).

    Article  Google Scholar 

  59. Lerman, I. et al. Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J. Appl. Physiol. 92(6), 2245–2255 (2002).

    Article  Google Scholar 

  60. Bouthegourd, J.C., Martin, J.C., Gripois, D., Roseau, S., Tome, D. & Even, P.C. Fat-depleted CLA-treated mice enter torpor after a short period of fasting. Appetite 42(1), 91–98 (2004).

    Article  Google Scholar 

  61. Faldt, J., Wernstedt, I., Fitzgerald, S.M., Wallenius, K., Bergstrom, G. & Jansson, J.O. Reduced exercise endurance in interleukin-6-deficient mice. Endocrinology 145(6), 2680–2686 (2004).

    Article  Google Scholar 

  62. Animal Welfare Act as Amended (7 USC, 2131–2139).

  63. 9 CFR 3.8.

Download references

Acknowledgements

The author would like to thank Christopher A. Coyle, Franc-Eric A. Wiedmer, and Hilary Woodcock for careful reading of the manuscript and helpful suggestions. This work was supported by grants from the US National Institutes of Health (R01 DK59903, R03 HD42499, and P30 DK46200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah J. Good PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Good, D. Using Obese Mouse Models in Research: Special Considerations for IACUC Members, Animal Care Technicians, and Researchers. Lab Anim 34, 30–37 (2005). https://doi.org/10.1038/laban0205-30

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban0205-30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing