Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Identifying genes for primary hypertension: methodological limitations and gene–environment interactions

Abstract

Hypertension segregates within families, indicating that genetic factors explain some of the variance in the risk of developing the disease; however, even with major advances in genotyping technologies facilitating the discovery of multiple genetic risk markers for cardiovascular and metabolic diseases, little progress has been made in defining the genetic defects that cause elevations in blood pressure. Several plausible explanations exist for this apparent paradox, one of which is that the risk conveyed by genes involved in the development of hypertension is context dependent. This notion is supported by a growing number of published animal and human studies, although none has yet provided unequivocal evidence that genetic and environmental factors interact to influence the risk of primary hypertension in humans. In this review, an assumption is made that common genetic variation contributes meaningfully to the development of primary hypertension. The review focuses on (i) several methodological limitations of genetic association studies and (ii) the roles that gene–environment interactions might play in the development of primary hypertension. The proceeding sections of the review examine the design features necessary for future studies to adequately test the hypothesis that genes for primary hypertension act in a context-dependent manner. Finally, an outline of how knowledge of gene–environment interactions might be used to optimize the prevention or treatment of primary hypertension is provided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26 (1): 76–80.

    Article  CAS  Google Scholar 

  2. van Dam RM, Hoebee B, Seidell JC, Schaap MM, de Bruin TW, Feskens EJ . Common variants in the ATP-sensitive K+ channel genes KCNJ11 (Kir6.2) and ABCC8 (SUR1) in relation to glucose intolerance: population-based studies and meta-analyses. Diabet Med 2005; 22 (5): 590–598.

    Article  CAS  Google Scholar 

  3. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40 (5): 638–645.

    Article  CAS  Google Scholar 

  4. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008; 40 (2): 189–197.

    Article  CAS  Google Scholar 

  5. Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet 2008; 371 (9611): 483–491.

    Article  CAS  Google Scholar 

  6. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008; 40 (2): 161–169.

    Article  CAS  Google Scholar 

  7. The Wellcome Trust Case–Control Consortium. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447 (7145): 661–678.

    Article  Google Scholar 

  8. Gu C, Borecki I, Gagnon J, Bouchard C, Leon AS, Skinner JS et al. Familial resemblance for resting blood pressure with particular reference to racial differences: preliminary analyses from the HERITAGE Family Study. Hum Biol 1998; 70 (1): 77–90.

    CAS  PubMed  Google Scholar 

  9. Franks PW . Muscling in on the genetics of quantitative disease traits. J Appl Physiol 2007; 103 (4): 1111–1112.

    Article  CAS  Google Scholar 

  10. Stamler J, Stamler R, Neaton JD . Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch Intern Med 1993; 153 (5): 598–615.

    Article  CAS  Google Scholar 

  11. Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55 000 vascular deaths. Lancet 2007; 370 (9602): 1829–1839.

    Article  Google Scholar 

  12. Ragland DR . Dichotomizing continuous outcome variables: dependence of the magnitude of association and statistical power on the cutpoint. Epidemiology 1992; 3 (5): 434–440.

    Article  CAS  Google Scholar 

  13. Pickering TG, Harshfield GA, Kleinert HD, Blank S, Laragh JH . Blood pressure during normal daily activities, sleep, and exercise. Comparison of values in normal and hypertensive subjects. JAMA 1982; 247 (7): 992–996.

    Article  CAS  Google Scholar 

  14. Rothman KJ, Greenland S . Modern Epidemiology, 2nd edn. Lippincott-Raven, Inc.: Philadelphia, PA, 1998.

    Google Scholar 

  15. Last JM . A Dictionary of Epidemiology, 3rd edn. Oxford University Press: Oxford, 1995.

    Google Scholar 

  16. Slatkin M . Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 2008; 9 (6): 477–485.

    Article  CAS  Google Scholar 

  17. Hopewell S, McDonald S, Clarke M, Egger M . Grey literature in meta-analyses of randomized trials of health care interventions. Cochrane Database Syst Rev 2007; (2): MR000010.

  18. Lander ES . The new genomics: global views of biology. Science 1996; 274 (5287): 536–539.

    Article  CAS  Google Scholar 

  19. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273 (5281): 1516–1517.

    Article  CAS  Google Scholar 

  20. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 2008; 40 (5): 575–583.

    Article  CAS  Google Scholar 

  21. Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 2008; 40 (5): 584–591.

    Article  CAS  Google Scholar 

  22. Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 2008; 40 (3): 281–283.

    Article  CAS  Google Scholar 

  23. Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 2008; 40 (3): 316–321.

    Article  CAS  Google Scholar 

  24. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 2008; 40 (3): 310–315.

    Article  CAS  Google Scholar 

  25. Franks PW, Knowler WC, Nair S, Koska J, Lee YH, Lindsay RS et al. Interaction between an 11betaHSD1 gene variant and birth era modifies the risk of hypertension in Pima Indians. Hypertension 2004; 44 (5): 681–688.

    Article  CAS  Google Scholar 

  26. Lu Q, Elston RC . Using the optimal receiver operating characteristic curve to design a predictive genetic test, exemplified with type 2 diabetes. Am J Hum Genet 2008; 82 (3): 641–651.

    Article  CAS  Google Scholar 

  27. Beeks E, Kessels AG, Kroon AA, van der Klauw MM, de Leeuw PW . Genetic predisposition to salt-sensitivity: a systematic review. J Hypertens 2004; 22 (7): 1243–1249.

    Article  CAS  Google Scholar 

  28. Takashima Y, Kokaze A, Matsunaga N, Yoshida M, Sekiguchi K, Sekine Y et al. Relations of blood pressure to angiotensinogen gene T174M polymorphism and alcohol intake. J Physiol Anthropol Appl Human Sci 2003; 22 (4): 187–194.

    Article  Google Scholar 

  29. Gambier N, Marteau JB, Batt AM, Marie B, Thompson A, Siest G et al. Interaction between CYP1A1 T3801C and AHR G1661A polymorphisms according to smoking status on blood pressure in the Stanislas cohort. J Hypertens 2006; 24 (11): 2199–2205.

    Article  CAS  Google Scholar 

  30. Gratze G, Fortin J, Labugger R, Binder A, Kotanko P, Timmermann B et al. Beta-2 Adrenergic receptor variants affect resting blood pressure and agonist-induced vasodilation in young adult Caucasians. Hypertension 1999; 33 (6): 1425–1430.

    Article  CAS  Google Scholar 

  31. Hopkins PN, Lifton RP, Hollenberg NK, Jeunemaitre X, Hallouin MC, Skuppin J et al. Blunted renal vascular response to angiotensin II is associated with a common variant of the angiotensinogen gene and obesity. J Hypertens 1996; 14 (2): 199–207.

    Article  CAS  Google Scholar 

  32. Hagberg JM, McCole SD, Brown MD, Ferrell RE, Wilund KR, Huberty A et al. ACE insertion/deletion polymorphism and submaximal exercise hemodynamics in postmenopausal women. J Appl Physiol 2002; 92 (3): 1083–1088.

    Article  CAS  Google Scholar 

  33. Jalil JE, Cordova S, Ocaranza M, Schumacher E, Braun S, Chamorro G et al. Angiotensin I-converting enzyme insertion/deletion polymorphism and adrenergic response to exercise in hypertensive patients. Med Sci Monit 2002; 8 (8): CR566–CR571.

    CAS  PubMed  Google Scholar 

  34. Kanazawa H, Okamoto T, Hirata K, Yoshikawa J . Deletion polymorphisms in the angiotensin converting enzyme gene are associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000; 162 (4 Part 1): 1235–1238.

    Article  CAS  Google Scholar 

  35. Krizanova O, Koska J, Vigas M, Kvetnansky R . Correlation of M235T DNA polymorphism with cardiovascular and endocrine responses during physical exercise in healthy subjects. Physiol Res 1998; 47 (2): 81–88.

    CAS  PubMed  Google Scholar 

  36. McCole SD, Brown MD, Moore GE, Ferrell RE, Wilund KR, Huberty A et al. Angiotensinogen M235T polymorphism associates with exercise hemodynamics in postmenopausal women. Physiol Genomics 2002; 10 (2): 63–69.

    Article  CAS  Google Scholar 

  37. Rankinen T, Gagnon J, Perusse L, Chagnon YC, Rice T, Leon AS et al. AGT M235T and ACE ID polymorphisms and exercise blood pressure in the HERITAGE Family Study. Am J Physiol Heart Circ Physiol 2000; 279 (1): H368–H374.

    Article  CAS  Google Scholar 

  38. Roltsch MH, Brown MD, Hand BD, Kostek MC, Phares DA, Huberty A et al. No association between ACE I/D polymorphism and cardiovascular hemodynamics during exercise in young women. Int J Sports Med 2005; 26 (8): 638–644.

    Article  CAS  Google Scholar 

  39. Zhang B, Sakai T, Miura S, Kiyonaga A, Tanaka H, Shindo M et al. Association of angiotensin-converting-enzyme gene polymorphism with the depressor response to mild exercise therapy in patients with mild to moderate essential hypertension. Clin Genet 2002; 62 (4): 328–333.

    Article  CAS  Google Scholar 

  40. Rauramaa R, Kuhanen R, Lakka TA, Vaisanen SB, Halonen P, Alen M et al. Physical exercise and blood pressure with reference to the angiotensinogen M235T polymorphism. Physiol Genomics 2002; 10 (2): 71–77.

    Article  CAS  Google Scholar 

  41. Rudnick J, Puttmann B, Tesch PA, Alkner B, Schoser BG, Salanova M et al. Differential expression of nitric oxide synthases (NOS 1–3) in human skeletal muscle following exercise countermeasure during 12 weeks of bed rest. FASEB J 2004; 18 (11): 1228–1230.

    Article  CAS  Google Scholar 

  42. Balon TW, Nadler JL . Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol 1994; 77 (6): 2519–2521.

    Article  CAS  Google Scholar 

  43. Yang AL, Tsai SJ, Jiang MJ, Jen CJ, Chen HI . Chronic exercise increases both inducible and endothelial nitric oxide synthase gene expression in endothelial cells of rat aorta. J Biomed Sci 2002; 9 (2): 149–155.

    Article  CAS  Google Scholar 

  44. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 2003; 107 (25): 3152–3158.

    Article  CAS  Google Scholar 

  45. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 2001; 104 (3): 342–345.

    Article  CAS  Google Scholar 

  46. Vimaleswaran KS, Franks PW, Barroso I, Brage S, Ekelund U, Wareham NJ et al. Habitual energy expenditure modifies the association between NOS3 gene polymorphisms and blood pressure. Am J Hypertens 2008; 21 (3): 297–302.

    Article  CAS  Google Scholar 

  47. Kimura T, Yokoyama T, Matsumura Y, Yoshiike N, Date C, Muramatsu M et al. NOS3 genotype-dependent correlation between blood pressure and physical activity. Hypertension 2003; 41 (2): 355–360.

    Article  CAS  Google Scholar 

  48. Rankinen T, Rice T, Perusse L, Chagnon YC, Gagnon J, Leon AS et al. NOS3 Glu298Asp genotype and blood pressure response to endurance training: the HERITAGE family study. Hypertension 2000; 36 (5): 885–889.

    Article  CAS  Google Scholar 

  49. Franks PW, Ekelund U, Brage S, Wong MY, Wareham NJ . Does the association of habitual physical activity with the metabolic syndrome differ by level of cardiorespiratory fitness? Diabetes Care 2004; 27 (5): 1187–1193.

    Article  Google Scholar 

  50. Dengel DR, Brown MD, Ferrell RE, Reynolds TH, Supiano MA . A preliminary study on T-786C endothelial nitric oxide synthase gene and renal hemodynamic and blood pressure responses to dietary sodium. Physiol Res 2007; 56 (4): 393–401.

    CAS  PubMed  Google Scholar 

  51. Hoffmann IS, Tavares-Mordwinkin R, Castejon AM, Alfieri AB, Cubeddu LX . Endothelial nitric oxide synthase polymorphism, nitric oxide production, salt sensitivity and cardiovascular risk factors in Hispanics. J Hum Hypertens 2005; 19 (3): 233–240.

    Article  CAS  Google Scholar 

  52. Florez JC, Jablonski KA, Kahn SE, Franks PW, Dabelea D, Hamman RF et al. Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes 2007; 56 (2): 531–536.

    Article  CAS  Google Scholar 

  53. Franks PW, Jablonski KA, Delahanty L, Hanson RL, Kahn SE, Altshuler D et al. The Pro12Ala variant at the peroxisome proliferator-activated receptor gamma gene and change in obesity-related traits in the Diabetes Prevention Program. Diabetologia 2007; 50 (12): 2451–2460.

    Article  CAS  Google Scholar 

  54. Bloche MG . Race-based therapeutics. N Engl J Med 2004; 351 (20): 2035–2037.

    Article  CAS  Google Scholar 

  55. Temple R, Stockbridge NL . BiDil for heart failure in black patients: the US Food and Drug Administration perspective. Ann Intern Med 2007; 146 (1): 57–62.

    Article  Google Scholar 

  56. Franks PW, Bhattacharyya S, Luan J, Montague C, Brennand J, Challis B et al. Association between physical activity and blood pressure is modified by variants in the G-protein coupled receptor 10. Hypertension 2004; 43 (2): 224–228.

    Article  CAS  Google Scholar 

  57. Dickinson HO, Mason JM, Nicolson DJ, Campbell F, Beyer FR, Cook JV et al. Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens 2006; 24 (2): 215–233.

    Article  CAS  Google Scholar 

  58. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007; 116 (9): 1081–1093.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Dr Bo Carlberg for his thoughtful comments and discussions while writing the paper. I was supported by grants from the Swedish Heart-Lung Foundation, Swedish Diabetes Association and Västerbottens Health Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P W Franks.

Additional information

Disclosure

None.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franks, P. Identifying genes for primary hypertension: methodological limitations and gene–environment interactions. J Hum Hypertens 23, 227–237 (2009). https://doi.org/10.1038/jhh.2008.134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2008.134

Keywords

This article is cited by

Search

Quick links