Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Neurosystems linking corticolimbic and hypothalamic pathways in energy balance: view from the Chair

Abstract

Recent work has advanced our knowledge of the neural pathways interfacing corticolimbic substrates of food motivation and reward with hypothalamic controls of food intake. As a neuroanatomical interface between limbic motivational processes, energy-sensing mechanisms in the mediobasal hypothalamus and motor output pathways, several studies draw attention to the lateral hypothalamus. Reviewed here are some highlights of the first session of the 11th International Symposium of the Merck-Frosst/CIHR Obesity Research Chair held in Quebec City on 5 November 2008 describing the neuroanatomical and neurochemical crosstalk between hypothalamic, midbrain and limbic sites and their role in energy balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB . Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 2005; 493: 63–71.

    Article  CAS  PubMed  Google Scholar 

  2. Kelley AE, Baldo BA, Pratt WE, Will MJ . Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 2005; 86: 773–795.

    Article  CAS  PubMed  Google Scholar 

  3. Zheng H, Berthoud HR . Neural systems controlling the drive to eat: mind versus metabolism. Physiology (Bethesda) 2008; 23: 75–83.

    CAS  Google Scholar 

  4. Baldo BA, Kelley AE . Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (Berl) 2007; 191: 439–459.

    Article  CAS  Google Scholar 

  5. Palmiter RD . Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann NY Acad Sci 2008; 1129: 35–46.

    Article  CAS  PubMed  Google Scholar 

  6. Trinko R, Sears RM, Guarnieri DJ, DiLeone RJ . Neural mechanisms underlying obesity and drug addiction. Physiol Behav 2007; 91: 499–505.

    Article  CAS  PubMed  Google Scholar 

  7. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006; 51: 801–810.

    Article  CAS  PubMed  Google Scholar 

  8. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006; 51: 811–822.

    Article  CAS  PubMed  Google Scholar 

  9. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006; 116: 3229–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Figlewicz DP, Naleid MA, Sipols AJ . Modulation of food reward by adiposity signals. Physiol Behav 2007; 91: 473–478.

    Article  CAS  PubMed  Google Scholar 

  11. Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG . Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 2003; 964: 107–115.

    Article  CAS  PubMed  Google Scholar 

  12. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A . Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 2006; 49: 589–601.

    Article  CAS  PubMed  Google Scholar 

  13. Shigemura N, Ohta R, Kusakabe Y, Miura H, Hino A, Koyano K et al. Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology 2004; 145: 839–847.

    Article  CAS  PubMed  Google Scholar 

  14. Julliard AK, Chaput MA, Apelbaum A, Aime P, Mahfouz M, Duchamp-Viret P . Changes in rat olfactory detection performance induced by orexin and leptin mimicking fasting and satiation. Behav Brain Res 2007; 183: 123–129.

    Article  CAS  PubMed  Google Scholar 

  15. Petrovich GD, Gallagher M . Control of food consumption by learned cues: a forebrain-hypothalamic network. Physiol Behav 2007; 91: 397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Volkow ND, Wang GJ, Fowler JS, Telang F . Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 2008; 363: 3191–3200.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang M, Gosnell BA, Kelley AE . Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther 1998; 285: 908–914.

    CAS  PubMed  Google Scholar 

  18. Zhang M, Kelley AE . Enhanced intake of high-fat food following striatal mu-opioid stimulation: microinjection mapping and fos expression. Neuroscience 2000; 99: 267–277.

    Article  CAS  PubMed  Google Scholar 

  19. Will MJ, Franzblau EB, Kelley AE . Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network. J Neurosci 2003; 23: 2882–2888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng H, Patterson LM, Berthoud HR . Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J Neurosci 2007; 27: 11075–11082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leinninger GM, Myers Jr MG . LRb signals act within a distributed network of leptin-responsive neurones to mediate leptin action. Acta Physiol (Oxf) 2008; 192: 49–59.

    Article  CAS  Google Scholar 

  22. Robertson SA, Leinninger GM, Myers Jr MG . Molecular and neural mediators of leptin action. Physiol Behav 2008; 94: 637–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DiLeone RJ, Georgescu D, Nestler EJ . Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci 2003; 73: 759–768.

    Article  CAS  PubMed  Google Scholar 

  24. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ et al. The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci 2005; 25: 2933–2940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pissios P, Frank L, Kennedy AR, Porter DR, Marino FE, Liu FF et al. Dysregulation of the mesolimbic dopamine system and reward in MCH-/- mice. Biol Psychiatry 2008; 64: 184–191.

    Article  CAS  PubMed  Google Scholar 

  26. Harris GC, Wimmer M, Aston-Jones G . A role for lateral hypothalamic orexin neurons in reward seeking. Nature 2005; 437: 556–559.

    Article  CAS  PubMed  Google Scholar 

  27. Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410: 822–825.

    Article  CAS  PubMed  Google Scholar 

  28. Di Marzo V, Matias I . Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8: 585–589.

    Article  CAS  PubMed  Google Scholar 

  29. Freund TF, Katona I, Piomelli D . Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 2003; 83: 1017–1066.

    Article  CAS  PubMed  Google Scholar 

  30. Cheer JF, Marsden CA, Kendall DA, Mason R . Lack of response suppression follows repeated ventral tegmental cannabinoid administration: an in vitro electrophysiological study. Neuroscience 2000; 99: 661–667.

    Article  CAS  PubMed  Google Scholar 

  31. Huang H, Acuna-Goycolea C, Li Y, Cheng HM, Obrietan K, van den Pol AN . Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: implications for cannabinoid actions on food intake and cognitive arousal. J Neurosci 2007; 27: 4870–4881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matias I, Cristino L, Di Marzo V . Endocannabinoids: some like it fat (and sweet too). J Neuroendocrinol 2008; 20 (Suppl 1): 100–109.

    Article  CAS  PubMed  Google Scholar 

  33. Hilairet S, Bouaboula M, Carriere D, Le Fur G, Casellas P . Hypersensitization of the Orexin 1 receptor by the CB1 receptor: evidence for cross-talk blocked by the specific CB1 antagonist, SR141716. J Biol Chem 2003; 278: 23731–23737.

    Article  CAS  PubMed  Google Scholar 

  34. Cota D . Role of endocannabinoid system in energy balance regulation and obesity. Front Horm Res 2008; 36: 135–145.

    Article  CAS  PubMed  Google Scholar 

  35. Kirkham TC, Williams CM, Fezza F, Di Marzo V . Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 2002; 136: 550–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheer JF, Wassum KM, Heien ML, Phillips PE, Wightman RM . Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci 2004; 24: 4393–4400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szabo B, Muller T, Koch H . Effects of cannabinoids on dopamine release in the corpus striatum and the nucleus accumbens in vitro. J Neurochem 1999; 73: 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  38. Gallate JE, Saharov T, Mallet PE, McGregor IS . Increased motivation for beer in rats following administration of a cannabinoid CB1 receptor agonist. Eur J Pharmacol 1999; 370: 233–240.

    Article  CAS  PubMed  Google Scholar 

  39. Guesdon B, Paradis E, Samson P, Richard D . Effects of intracerebroventricular and intra-accumbens melanin-concentrating hormone agonism on food intake and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2009; 296: R469–R475.

    Article  CAS  PubMed  Google Scholar 

  40. Nieuwenhuys R, Geeraedts LM, Veening JG . The medial forebrain bundle of the rat. I. General introduction. J Comp Neurol 1982; 206: 49–81.

    Article  CAS  PubMed  Google Scholar 

  41. Veening JG, Swanson LW, Cowan WM, Nieuwenhuys R, Geeraedts LM . The medial forebrain bundle of the rat. II. An autoradiographic study of the topography of the major descending and ascending components. J Comp Neurol 1982; 206: 82–108.

    Article  CAS  PubMed  Google Scholar 

  42. Zahm DS . An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 2000; 24: 85–105.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fulton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulton, S. Neurosystems linking corticolimbic and hypothalamic pathways in energy balance: view from the Chair. Int J Obes 33 (Suppl 2), S3–S7 (2009). https://doi.org/10.1038/ijo.2009.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.64

Keywords

Search

Quick links