Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity

Abstract

Background:

Myostatin, also known as Growth and Differentiation Factor 8, is a secreted protein that inhibits muscle growth. Disruption of myostatin signaling increases muscle mass and decreases glucose, but it is unclear whether these changes are related. We treated mice on chow and high-fat diets with a soluble activin receptor type IIB (ActRIIB, RAP-031), which is a putative endogenous signaling receptor for myostatin and other ligands of the TGF-β superfamily.

Results:

After 4 weeks, RAP-031 increased lean and muscle mass, grip strength and contractile force. RAP-031 enhanced the ability of insulin to suppress glucose production under clamp conditions in high-fat fed mice, but did not significantly change insulin-mediated glucose disposal. The hepatic insulin-sensitizing effect of RAP-031 treatment was associated with increased adiponectin levels. RAP-031 treatment for 10 weeks further increased muscle mass and drastically reduced fat content in mice on either chow or high-fat diet. RAP-031 suppressed hepatic glucose production and increased peripheral glucose uptake in chow-fed mice. In contrast, RAP-031 suppressed glucose production with no apparent change in glucose disposal in high-fat-diet mice.

Conclusion:

Our findings show that disruption of ActRIIB signaling is a viable pharmacological approach for treating obesity and diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. McPherron AC, Lee SJ . Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 1997; 94: 12457–12461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McPherron AC, Lawler AM, Lee SJ . Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387: 83–90.

    Article  CAS  PubMed  Google Scholar 

  3. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 2007; 3: e79.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004; 350: 2682–2688.

    Article  CAS  PubMed  Google Scholar 

  5. Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002; 420: 418–421.

    Article  CAS  PubMed  Google Scholar 

  6. Bogdanovich S, Perkins KJ, Krag TO, Whittemore LA, Khurana TS . Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. FASEB J 2005; 19: 543–549.

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki ST, Zhao B, Yang J . Enhanced muscle by myostatin propeptide increases adipose tissue adiponectin, PPAR-alpha, and PPAR-gamma expressions. Biochem Biophys Res Commun 2008; 369: 767–773.

    Article  CAS  PubMed  Google Scholar 

  8. Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A, Shilling C et al. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci USA 2008; 105: 4318–4322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Artaza JN, Bhasin S, Magee TR, Reisz-Porszasz S, Shen R, Groome NP et al. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology 2005; 146: 3547–3557.

    Article  CAS  PubMed  Google Scholar 

  10. Feldman BJ, Streeper RS, Farese Jr RV, Yamamoto KR . Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc Natl Acad Sci USA 2006; 103: 15675–15680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim HS, Liang L, Dean RG, Hausman DB, Hartzell DL, Baile CA . Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures. Biochem Biophys Res Commun 2001; 281: 902–906.

    Article  CAS  PubMed  Google Scholar 

  12. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L . Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 2003; 23: 7230–7242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allen DL, Cleary AS, Speaker KJ, Lindsay SF, Uyenishi J, Reed JM et al. Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am J Physiol Endocrinol Metab 2008; 294: E918–E927.

    Article  CAS  PubMed  Google Scholar 

  14. Hittel DS, Berggren JR, Shearer J, Boyle K, Houmard JA . Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 2009; 58: 30–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN et al. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci USA 2005; 102: 18117–18122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilkes JJ, Lloyd DJ, Gekakis N . A loss-of-function mutation in myostatin reduces TNF{alpha} production and protects liver. Diabetes 2009; 58: 1133–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McPherron AC, Lee SJ . Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 2002; 109: 595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao B, Wall RJ, Yang J . Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 2005; 337: 248–255.

    Article  CAS  PubMed  Google Scholar 

  19. Morrison BM, Lachey JL, Warsing LC, Ting BL, Pullen AE, Underwood KW et al. A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2009; 217: 258–268.

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi N, Patel HR, Qi Y, Dushay J, Ahima RS . Divergent effects of leptin in mice susceptible or resistant to obesity. Horm Metab Res 2002; 34: 691–697.

    Article  CAS  PubMed  Google Scholar 

  21. Varela GM, Antwi DA, Dhir R, Yin X, Singhal NS, Graham MJ et al. Inhibition of ADRP prevents diet-induced insulin resistance. Am J Physiol Gastrointest Liver Physiol 2008; 295: G621–G628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singhal NS, Lazar MA, Ahima RS . Central resistin induces hepatic insulin resistance via neuropeptide Y. J Neurosci 2007; 27: 12924–12932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moens P, Baatsen PH, Marechal G . Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. J Muscle Res Cell Motil 1993; 14: 446–451.

    Article  CAS  PubMed  Google Scholar 

  24. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL . Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 1993; 90: 3710–3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mendias CL, Marcin JE, Calerdon DR, Faulkner JA . Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J Appl Physiol 2006; 101: 898–905.

    Article  CAS  PubMed  Google Scholar 

  26. Leibel RL, Hirsch J . Metabolic characterization of obesity. Ann Intern Med 1985; 103: 1000–1002.

    Article  CAS  PubMed  Google Scholar 

  27. Kahn BB, Flier JS . Obesity and insulin resistance. J Clin Invest 2000; 106: 473–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.

    Article  CAS  PubMed  Google Scholar 

  29. Galgani JE, Moro C, Ravussin E . Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab 2008; 295: E1009–E1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moro C, Bajpeyi S, Smith SR . Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am J Physiol Endocrinol Metab 2008; 294: E203–E213.

    Article  CAS  PubMed  Google Scholar 

  31. Pedersen BK, Febbraio MA . Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88: 1379–1406.

    Article  CAS  PubMed  Google Scholar 

  32. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN et al. Induction of cachexia in mice by systemically administered myostatin. Science 2002; 296: 1486–1488.

    Article  CAS  PubMed  Google Scholar 

  33. Stolz LE, Li D, Qadri A, Jalenak M, Klaman LD, Tobin JF . Administration of myostatin does not alter fat mass in adult mice. Diabetes Obes Metab 2008; 10: 135–142.

    CAS  PubMed  Google Scholar 

  34. Kadowaki T, Yamauchi T . Adiponectin and adiponectin receptors. Endocr Rev 2005; 26: 439–451.

    Article  CAS  PubMed  Google Scholar 

  35. Izumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J et al. Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 2008; 7: 159–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ouchi N, Oshima Y, Ohashi K, Higuchi A, Ikegami C, Izumiya Y et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 2008; 283: 32802–32811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 2009; 296: C1248–C1257.

    Article  CAS  PubMed  Google Scholar 

  38. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ . Myostatin reduces Akt/TORC1/p70S6 K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 2009; 296: C1258–C1270.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants RO1-DK062348 and PO1-DK049210 to RSA, University of Pennsylvania Diabetes Endocrinology Research Center (DERC) Mouse Metabolic Phenotyping Core (P30-DK19525), and World Anti-Doping Agency (WADA, Institution No: 801619) to TSK, and Acceleron Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Ahima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akpan, I., Goncalves, M., Dhir, R. et al. The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity. Int J Obes 33, 1265–1273 (2009). https://doi.org/10.1038/ijo.2009.162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.162

Keywords

This article is cited by

Search

Quick links