Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endothelial progenitor cell number and colony-forming capacity in overweight and obese adults

Abstract

Objective:

To investigate whether adiposity influences endothelial progenitor cell (EPC) number and colony-forming capacity.

Design:

Cross-sectional study of normal weight, overweight and obese adult humans.

Participants:

Sixty-seven sedentary adults (aged 45–65 years): 25 normal weight (body mass index (BMI) 25 kg/m2; 12 males/13 females); 18 overweight (BMI=25–29.9 kg/m2; 12 males/6 females); and 24 obese (BMI 30 kg/m2; 18 males/6 females). All participants were non-smokers and free of overt cardiometabolic disease.

Measurements:

Peripheral blood samples were collected and circulating EPC number was assessed by flow cytometry. Putative EPCs were defined as CD45/CD34+/VEGFR-2+/CD133+ or CD45/CD34+ cells. EPC colony-forming capacity was measured in vitro using a colony-forming unit (CFU) assay.

Results:

Number of circulating putative EPCs (either CD45/CD34+/VEGFR-2+/CD133+ or CD45/CD34+ cells) was lower (P<0.05) in obese (0.0007±0.0001%; 0.050±0.006%) compared with overweight (0.0016±0.0004%; 0.089±0.019%) and normal weight (0.0015±0.0003%; 0.082±0.008%) adults. There were no differences in EPC number between the overweight and normal weight groups. EPC colony formation was significantly less in the obese (6±1) and overweight (4±1) compared with normal weight (9±2) adults.

Conclusion:

These results indicate that: (1) the number of circulating EPCs is lower in obese compared with overweight and normal weight adults; and (2) EPC colony-forming capacity is blunted in overweight and obese adults compared with normal weight adults. Impairments in EPC number and function may contribute to adiposity-related cardiovascular risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Yan LL, Daviglus ML, Liu K, Stamler J, Wang R, Pirzada A et al. Midlife body mass index and hospitalization and mortality in older age. JAMA 2006; 295: 190–198.

    Article  CAS  Google Scholar 

  2. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. American Heart Association, Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006; 113: 898–918.

    Article  Google Scholar 

  3. Van Guilder GP, Hoetzer GL, Smith DT, Irmiger HM, Greiner JJ, Stauffer BL et al. Endothelial t-PA release is impaired in overweight and obese adults but can be improved with regular aerobic exercise. Am J Physiol Endocrinol Metab 2005; 289: E807–E813.

    Article  CAS  Google Scholar 

  4. Van Guilder GP, Hoetzer GL, Dengel DR, Stauffer BL, DeSouza CA . Impaired endothelium-dependent vasodilation in normotensive and normoglycemic obese adult humans. J Cardiovasc Pharmacol 2006; 47: 310–313.

    Article  CAS  Google Scholar 

  5. Dzau VJ, Gnecchi M, Pachori AS, Morello F, Melo LG . Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 2005; 46: 7–18.

    Article  CAS  Google Scholar 

  6. Asahara T, Murohara T, Sullivan A, Silver M, van der ZR, Li T et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    Article  CAS  Google Scholar 

  7. Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000; 87: 728–730.

    Article  CAS  Google Scholar 

  8. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

    Article  CAS  Google Scholar 

  9. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002; 105: 3017–3024.

    Article  CAS  Google Scholar 

  10. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005; 111: 2981–2987.

    Article  Google Scholar 

  11. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353: 999–1007.

    Article  CAS  Google Scholar 

  12. Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK et al. Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J 2006; 152: 190–195.

    Article  Google Scholar 

  13. Matsuo Y, Imanishi T, Hayashi Y, Tomobuchi Y, Kubo T, Hano T et al. The effect of senescence of endothelial progenitor cells on in-stent restenosis in patients undergoing coronary stenting. Intern Med 2006; 45: 581–587.

    Article  Google Scholar 

  14. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002; 106: 2781–2786.

    Article  Google Scholar 

  15. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001; 89: E1–E7.

    Article  CAS  Google Scholar 

  16. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593–600.

    Article  Google Scholar 

  17. Lohman T, Roche A, Mortorell R . Anthropometric Standardization Reference Manual. Human Kinetics: Champaign, IL, 1988.

    Google Scholar 

  18. DeSouza CA, Jones PP, Seals DR . Physical activity status and adverse age-related differences in coagulation and fibrinolytic factors in women. Arterioscler Thromb Vasc Biol 1998; 18: 362–368.

    Article  CAS  Google Scholar 

  19. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  20. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I . The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 1996; 5: 213–226.

    Article  CAS  Google Scholar 

  21. Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA . Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol 2007; 102: 847–852.

    Article  Google Scholar 

  22. Meyers MR, Gokce N . Endothelial dysfunction in obesity: etiological role in atherosclerosis. Curr Opin Endocrinol Diabetes Obes 2007; 14: 365–369.

    Article  CAS  Google Scholar 

  23. Shankar SS, Steinberg HO . Obesity and endothelial dysfunction. Semin Vasc Med 2005; 5: 56–64.

    Article  Google Scholar 

  24. Dimmeler S, Zeiher AM . Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J Mol Med 2004; 82: 671–677.

    Article  Google Scholar 

  25. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 2006; 26: 2140–2146.

    Article  CAS  Google Scholar 

  26. Lev EI, Kleiman NS, Birnbaum Y, Harris D, Korbling M, Estrov Z . Circulating endothelial progenitor cells and coronary collaterals in patients with non-ST segment elevation myocardial infarction. J Vasc Res 2005; 42: 408–414.

    Article  Google Scholar 

  27. Dobert N, Britten M, Assmus B, Berner U, Menzel C, Lehmann R et al. Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT. Eur J Nucl Med Mol Imaging 2004; 31: 1146–1151.

    Article  Google Scholar 

  28. Fadini GP, de Kreutzenberg SV, Coracina A, Baesso I, Agostini C, Tiengo A et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur Heart J 2006; 27: 2247–2255.

    Article  CAS  Google Scholar 

  29. Muller-Ehmsen J, Braun D, Schneider T, Pfister R, Worm N, Wielckens K et al. Decreased number of circulating progenitor cells in obesity: beneficial effects of weight reduction. Eur Heart J 2008; 29: 1560–1568.

    Article  Google Scholar 

  30. McGill Jr HC, McMahan CA, Herderick EE, Zieske AW, Malcom GT, Tracy RE et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation 2002; 105: 2712–2718.

    Article  Google Scholar 

  31. Yilmaz MB, Biyikoglu SF, Akin Y, Guray U, Kisacik HL, Korkmaz S . Obesity is associated with impaired coronary collateral vessel development. Int J Obes Relat Metab Disord 2003; 27: 1541–1545.

    Article  CAS  Google Scholar 

  32. Wee CC, Girotra S, Weinstein AR, Mittleman MA, Mukamal KJ . The relationship between obesity and atherosclerotic progression and prognosis among patients with coronary artery bypass grafts the effect of aggressive statin therapy. J Am Coll Cardiol 2008; 52: 620–625.

    Article  Google Scholar 

  33. Van Guilder GP, Stauffer BL, Greiner JJ, DeSouza CA . Impaired endothelium-dependent vasodilation in overweight and obese adult humans is not limited to muscarinic receptor agonists. Am J Physiol Heart Circ Physiol 2008; 294: H1685–H1692.

    Article  CAS  Google Scholar 

  34. Rea TD, Heckbert SR, Kaplan RC, Psaty BM, Smith NL, Lemaitre RN et al. Body mass index and the risk of recurrent coronary events following acute myocardial infarction. Am J Cardiol 2001; 88: 467–472.

    Article  CAS  Google Scholar 

  35. DeSouza CA, Van Guilder GP, Greiner JJ, Smith DT, Hoetzer GL, Stauffer BL . Basal endothelial nitric oxide release is preserved in overweight and obese adults. Obes Res 2005; 13: 1303–1306.

    Article  CAS  Google Scholar 

  36. Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH et al. C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 2004; 109: 2058–2067.

    Article  CAS  Google Scholar 

  37. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM . Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002; 109: 337–346.

    Article  CAS  Google Scholar 

  38. Rehman J, Li J, Orschell CM, March KL . Peripheral blood ‘endothelial progenitor cells’ are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003; 107: 1164–1169.

    Article  Google Scholar 

  39. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A . Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 2008; 197: 496–503.

    Article  CAS  Google Scholar 

  40. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    CAS  PubMed  Google Scholar 

  41. Sbarbati R, de BM, Marzilli M, Scarlattini M, Rossi G, van Mourik JA . Immunologic detection of endothelial cells in human whole blood. Blood 1991; 77: 764–769.

    CAS  PubMed  Google Scholar 

  42. Urbich C, Dimmeler S . Endothelial progenitor cells functional characterization. Trends Cardiovasc Med 2004; 14: 318–322.

    Article  CAS  Google Scholar 

  43. Urbich C, Dimmeler S . Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95: 343–353.

    Article  CAS  Google Scholar 

  44. Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 2007; 35: 1109–1118.

    Article  CAS  Google Scholar 

  45. Distler JH, Allanore Y, Avouac J, Giacomelli R, Guiducci S, Moritz F et al. EUSTAR statement and recommendations on endothelial precursor cells. Ann Rheum Dis July 23 2008 [e-pub ahead of print].

  46. Timmermans F, Van HF, De SM, Raedt R, Plasschaert F, De Buyzere ML et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 2007; 27: 1572–1579.

    Article  CAS  Google Scholar 

  47. Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 2004; 24: 1442–1447.

    Article  CAS  Google Scholar 

  48. Diller GP, van ES, Okonko DO, Howard LS, Ali O, Thum T et al. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation 2008; 117: 3020–3030.

    Article  CAS  Google Scholar 

  49. Numaguchi Y, Sone T, Okumura K, Ishii M, Morita Y, Kubota R et al. The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 2006; 114 (Suppl): I114–I119.

    PubMed  Google Scholar 

  50. Hristov M, Fach C, Becker C, Heussen N, Liehn EA, Blindt R et al. Reduced numbers of circulating endothelial progenitor cells in patients with coronary artery disease associated with long-term statin treatment. Atherosclerosis 2007; 192: 413–420.

    Article  CAS  Google Scholar 

  51. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001; 108: 391–397.

    Article  CAS  Google Scholar 

  52. Shantsila E, Watson T, Tse HF, Lip GY . Endothelial colony forming units: are they a reliable marker of endothelial progenitor cell numbers? Ann Med 2007; 39: 474–479.

    Article  CAS  Google Scholar 

  53. Tura O, Barclay GR, Roddie H, Davies J, Turner ML . Absence of a relationship between immunophenotypic and colony enumeration analysis of endothelial progenitor cells in clinical haematopoietic cell sources. J Transl Med 2007; 5: 37.

    Article  Google Scholar 

  54. Hill JM, Finkel T, Quyyumi AA . Endothelial progenitor cells and endothelial dysfunction. Vox Sang 2004; 87 (Suppl 2): 31–37.

    Article  Google Scholar 

  55. Quyyumi AA . Circulating endothelial progenitor cells as novel biological determinants of vascular function and risk. Can J Cardiol 2004; 20 (Suppl B): 44B–48B.

    PubMed  Google Scholar 

  56. Rohde E, Bartmann C, Schallmoser K, Reinisch A, Lanzer G, Linkesch W et al. Immune cells mimic the morphology of endothelial progenitor colonies in vitro. Stem Cells 2007; 25: 1746–1752.

    Article  CAS  Google Scholar 

  57. Hur J, Yang HM, Yoon CH, Lee CS, Park KW, Kim JH et al. Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circulation 2007; 116: 1671–1682.

    Article  Google Scholar 

  58. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 2004; 24: 288–293.

    Article  CAS  Google Scholar 

  59. Ciulla MM, Giorgetti A, Silvestris I, Cortiana M, Montelatici E, Paliotti R et al. Endothelial colony forming capacity is related to C-reactive protein levels in healthy subjects. Curr Neurovasc Res 2006; 3: 99–106.

    Article  CAS  Google Scholar 

  60. Imanishi T, Hano T, Sawamura T, Nishio I . Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol 2004; 31: 407–413.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all of the participants who participated in the study as well as Jeremy Stoner and Yoli Casas for their technical and administrative assistance. This study was supported by National Institutes of Health Awards HL076434, HL077450 and RR00051, American Heart Association Award 0555678Z and an American Diabetes Association Clinical Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C A DeSouza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacEneaney, O., Kushner, E., Van Guilder, G. et al. Endothelial progenitor cell number and colony-forming capacity in overweight and obese adults. Int J Obes 33, 219–225 (2009). https://doi.org/10.1038/ijo.2008.262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.262

Keywords

This article is cited by

Search

Quick links