Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Jaagsiekte sheep retrovirus pseudotyped lentiviral vector-mediated gene transfer to fetal ovine lung

Abstract

Viral vector-mediated gene transfer to the postnatal respiratory epithelium has, in general, been of low efficiency due to physical and immunological barriers, non-apical location of cellular receptors critical for viral uptake and limited transduction of resident stem/progenitor cells. These obstacles may be overcome using a prenatal strategy. In this study, HIV-1-based lentiviral vectors (LVs) pseudotyped with the envelope glycoproteins of Jaagsiekte sheep retrovirus (JSRV-LV), baculovirus GP64 (GP64-LV), Ebola Zaire-LV or vesicular stomatitis virus (VSVg-LV) and the adeno-associated virus-2/6.2 (AAV2/6.2) were compared for in utero transfer of a green fluorescent protein (GFP) reporter gene to ovine lung epithelium between days 65 and 78 of gestation. GFP expression was examined on day 85 or 136 of gestation (term is 145 days). The percentage of the respiratory epithelial cells expressing GFP in fetal sheep that received the JSRV-LV (3.18 × 108–6.85 × 109 viral particles per fetus) was 24.6±0.9% at 3 weeks postinjection (day 85) and 29.9±4.8% at 10 weeks postinjection (day 136). Expression was limited to the surface epithelium lining fetal airways <100 μm internal diameter. Fetal airways were amenable to VSVg-LV transduction, although the percentage of epithelial expression was low (6.6±0.6%) at 1 week postinjection. GP64-LV, Ebola Zaire-LV and AAV2/6.2 failed to transduce the fetal ovine lung under these conditions. These data demonstrate that prenatal lung gene transfer with LV engineered to target apical surface receptors can provide sustained and high levels of transgene expression and support the therapeutic potential of prenatal gene transfer for the treatment of congenital lung diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Worgall S, Leopold PL, Wolff G, Ferris B, Van Roijen N, Crystal RG . Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum Gene Ther 1997; 8: 1675–1684.

    Article  CAS  Google Scholar 

  2. Kushwah R, Oliver JR, Cao H, Hu J . Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways. Gene Therapy 2007; 14: 1243–1248.

    Article  CAS  Google Scholar 

  3. Zabner J, Zeiher BG, Friedman E, Welsh MJ . Adenovirus-mediated gene transfer to ciliated airway epithelia requires prolonged incubation time. J Virol 1996; 70: 6994–7003.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kitson C, Angel B, Judd D, Rothery S, Severs NJ, Dewar A et al. The extra- and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium. Gene Therapy 1999; 6: 534–546.

    Article  CAS  Google Scholar 

  5. Pickles RJ, Fahrner JA, Petrella JM, Boucher RC, Bergelson JM . Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J Virol 2000; 74: 6050–6057.

    Article  CAS  Google Scholar 

  6. Stonebraker JR, Wagner D, Lefensty RW, Burns K, Gendler SJ, Bergelson JM et al. Glycocalyx restricts adenoviral vector access to apical receptors expressed on respiratory epithelium in vitro and in vivo: role for tethered mucins as barriers to lumenal infection. J Virol 2004; 78: 13755–13768.

    Article  CAS  Google Scholar 

  7. Halbert CL, Rutledge EA, Allen JM, Russell DW, Miller AD . Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol 2000; 74: 1524–1532.

    Article  CAS  Google Scholar 

  8. Liu X, Luo M, Guo C, Yan Z, Wang Y, Lei-Butters DC et al. Analysis of adeno-associated virus progenitor cell transduction in mouse lung. Mol Ther 2009; 17: 285–293.

    Article  CAS  Google Scholar 

  9. Moss RB, Rodman D, Spencer LT, Aitken ML, Zeitlin PL, Waltz D et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 2004; 125: 509–521.

    Article  Google Scholar 

  10. Alcorn DG, Adamson TM, Maloney JE, Robinson PM . A morphologic and morphometric analysis of fetal lung development in the sheep. Anat Rec 1981; 201: 655–667.

    Article  CAS  Google Scholar 

  11. Olver RE, Schneeberger EE, Walters DV . Epithelial solute permeability, ion transport and tight junction morphology in the developing lung of the fetal lamb. J Physiol 1981; 315: 395–412.

    Article  CAS  Google Scholar 

  12. Higashi K, Naito M, Takeya M, Ando M, Araki S, Takahashi K . Ontogenetic development, differentiation, and phenotypic expression of macrophages in fetal rat lungs. J Leukoc Biol 1992; 51: 444–454.

    Article  CAS  Google Scholar 

  13. Cerna A, Janega P, Martanovic P, Lisy M, Babal P . Changes in sialic acid expression in the lung during intrauterine development of the human fetus. Acta Histochem 2002; 104: 339–342.

    Article  CAS  Google Scholar 

  14. Faraggiana T, Villari D, Jagirdar J, Patil J . Expression of sialic acid on the alveolar surface of adult and fetal human lungs. J Histochem Cytochem 1986; 34: 811–816.

    Article  CAS  Google Scholar 

  15. Sabatino DE, Mackenzie TC, Peranteau W, Edmonson S, Campagnoli C, Liu YL et al. Persistent expression of hF.IX after tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther 2007; 15: 1677–1685.

    Article  CAS  Google Scholar 

  16. Endo M, Henriques-Coelho T, Zoltick PW, Stitelman DH, Peranteau WH, Radu A et al. The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors. Gene Therapy 2010; 17: 61–71.

    Article  CAS  Google Scholar 

  17. McCray Jr PB, Armstrong K, Zabner J, Miller DW, Koretzky GA, Couture L et al. Adenoviral-mediated gene transfer to fetal pulmonary epithelia in vitro and in vivo. J Clin Invest 1995; 95: 2620–2632.

    Article  CAS  Google Scholar 

  18. Vincent MC, Trapnell BC, Baughman RP, Wert SE, Whitsett JA, Iwamoto HS . Adenovirus-mediated gene transfer to the respiratory tract of fetal sheep in utero. Hum Gene Ther 1995; 6: 1019–1028.

    Article  CAS  Google Scholar 

  19. Sekhon HS, Larson JE . In utero gene transfer into the pulmonary epithelium. Nat Med 1995; 1: 1201–1203.

    Article  CAS  Google Scholar 

  20. Tarantal AF, Lee CC . Long-term luciferase expression monitored by bioluminescence imaging after adeno-associated virus-mediated fetal gene delivery in rhesus monkeys (Macaca mulatta). Hum Gene Ther 2010; 21: 143–148.

    Article  CAS  Google Scholar 

  21. Boyle MP, Enke RA, Adams RJ, Guggino WB, Zeitlin PL . In utero AAV-mediated gene transfer to rabbit pulmonary epithelium. Mol Ther 2001; 4: 115–121.

    Article  CAS  Google Scholar 

  22. Limberis MP, Wilson JM . Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proc Natl Acad Sci USA 2006; 103: 12993–12998.

    Article  CAS  Google Scholar 

  23. Kumar M, Keller B, Makalou N, Sutton RE . Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 2001; 12: 1893–1905.

    Article  CAS  Google Scholar 

  24. Endo M, Zoltick PW, Chung DC, Bennett J, Radu A, Muvarak N et al. Gene transfer to ocular stem cells by early gestational intraamniotic injection of lentiviral vector. Mol Ther 2007; 15: 579–587.

    Article  CAS  Google Scholar 

  25. Endo M, Zoltick PW, Peranteau WH, Radu A, Muvarak N, Ito M et al. Efficient in vivo targeting of epidermal stem cells by early gestational intraamniotic injection of lentiviral vector driven by the keratin 5 promoter. Mol Ther 2008; 16: 131–137.

    Article  CAS  Google Scholar 

  26. Stitelman DH, Endo M, Bora A, Muvarak N, Zoltick PW, Flake AW et al. Robust in vivo transduction of nervous system and neural stem cells by early gestational intra amniotic gene transfer using lentiviral vector. Mol Ther 2010; 18: 1615–1623.

    Article  CAS  Google Scholar 

  27. Mishra S, Wang X, Smiley N, Xia P, Hong CM, Senadheera D et al. Genetic modification of airway progenitors following lentiviral gene delivery to the amniotic fluid of murine fetuses. Am J Respir Cell Mol Biol 2010; 44: 562–570.

    Article  Google Scholar 

  28. Tarantal AF, McDonald RJ, Jimenez DF, Lee CC, O'Shea CE, Leapley AC et al. Intrapulmonary and intramyocardial gene transfer in rhesus monkeys (Macaca mulatta): safety and efficiency of HIV-1-derived lentiviral vectors for fetal gene delivery. Mol Ther 2005; 12: 87–98.

    Article  CAS  Google Scholar 

  29. Skarsgard ED, Huang L, Reebye SC, Yeung AY, Jia WW . Lentiviral vector-mediated, in vivo gene transfer to the tracheobronchial tree in fetal rabbits. J Pediatr Surg 2005; 40: 1817–1821.

    Article  Google Scholar 

  30. Henriques-Coelho T, Gonzaga S, Endo M, Zoltick PW, Davey M, Leite-Moreira AF et al. Targeted gene transfer to fetal rat lung interstitium by ultrasound-guided intrapulmonary injection. Mol Ther 2007; 15: 340–347.

    Article  CAS  Google Scholar 

  31. Toelen J, Deroose CM, Gijsbers R, Reumers V, Sbragia LN, Vets S et al. Fetal gene transfer with lentiviral vectors: long-term in vivo follow-up evaluation in a rat model. Am J Obstet Gynecol 2007; 196: 352.e1-6.

    Article  Google Scholar 

  32. Yu ZY, McKay K, van Asperen P, Zheng M, Fleming J, Ginn SL et al. Lentivirus vector-mediated gene transfer to the developing bronchiolar airway epithelium in the fetal lamb. J Gene Med 2007; 9: 429–439.

    Article  CAS  Google Scholar 

  33. Tarantal AF, Lee CC, Jimenez DF, Cherry SR . Fetal gene transfer using lentiviral vectors: in vivo detection of gene expression by microPET and optical imaging in fetal and infant monkeys. Hum Gene Ther 2006; 17: 1254–1261.

    Article  CAS  Google Scholar 

  34. Fuller S, von Bonsdorff CH, Simons K . Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell 1984; 38: 65–77.

    Article  CAS  Google Scholar 

  35. Limberis M, Anson DS, Fuller M, Parsons DW . Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Hum Gene Ther 2002; 13: 1961–1970.

    Article  CAS  Google Scholar 

  36. Buckley SM, Howe SJ, Sheard V, Ward NJ, Coutelle C, Thrasher AJ et al. Lentiviral transduction of the murine lung provides efficient pseudotype and developmental stage-dependent cell-specific transgene expression. Gene Therapy 2008; 15: 1167–1175.

    Article  CAS  Google Scholar 

  37. Medina MF, Kobinger GP, Rux J, Gasmi M, Looney DJ, Bates P et al. Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol Ther 2003; 8: 777–789.

    Article  Google Scholar 

  38. Kobinger GP, Weiner DJ, Yu QC, Wilson JM . Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 2001; 19: 225–230.

    Article  CAS  Google Scholar 

  39. Miller AD . Identification of Hyal2 as the cell-surface receptor for Jaagsiekte sheep retrovirus and ovine nasal adenocarcinoma virus. Curr Top Microbiol Immunol 2003; 275: 179–199.

    CAS  PubMed  Google Scholar 

  40. Carlon M, Toelen J, Van der Perren A, Vandenberghe LH, Reumers V, Sbragia L et al. Efficient gene transfer into the mouse lung by fetal intratracheal injection of rAAV2/6.2. Mol Ther 2010; 18: 2130–2138.

    Article  CAS  Google Scholar 

  41. Limberis MP, Vandenberghe LH, Zhang L, Pickles RJ, Wilson JM . Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 2009; 17: 294–301.

    Article  CAS  Google Scholar 

  42. Adamson TM, Boyd RD, Platt HS, Strang LB . Composition of alveolar liquid in the foetal lamb. J Physiol 1969; 204: 159–168.

    Article  CAS  Google Scholar 

  43. Cote M, Zheng YM, Liu SL . Receptor binding and low pH coactivate oncogenic retrovirus envelope-mediated fusion. J Virol 2009; 83: 11447–11455.

    Article  CAS  Google Scholar 

  44. Parsons DW, Ford WD, Cool JC, Martin AJ, Staugas RE, Kennedy JD . Fetal lung compliance in premature and term lambs after two methods of in utero repair of diaphragmatic hernia. Thorax 1994; 49: 1015–1019.

    Article  CAS  Google Scholar 

  45. Liu Y, Hangoc G, Campbell TB, Goodman M, Tao W, Pollok K et al. Identification of parameters required for efficient lentiviral vector transduction and engraftment of human cord blood CD34(+) NOD/SCID-repopulating cells. Exp Hematol 2008; 36: 947–956.

    Article  CAS  Google Scholar 

  46. Pitt BR, Schwarz MA, Pilewski JM, Nakayama D, Mueller GM, Robbins PD et al. Retrovirus-mediated gene transfer in lungs of living fetal sheep. Gene Therapy 1995; 2: 344–350.

    CAS  PubMed  Google Scholar 

  47. Davey MG, Hedrick HL, Bouchard S, Mendoza JM, Schwarz U, Adzick NS et al. Temporary tracheal occlusion in fetal sheep with lung hypoplasia does not improve postnatal lung function. J Appl Physiol 2003; 94: 1054–1062.

    Article  Google Scholar 

  48. Park F, Ohashi K, Chiu W, Naldini L, Kay MA . Efficient lentiviral transduction of liver requires cell cycling in vivo. Nat Genet 2000; 24: 49–52.

    Article  CAS  Google Scholar 

  49. Deprest JA, Devlieger R, Srisupundit K, Beck V, Sandaite I, Rusconi S et al. Fetal surgery is a clinical reality. Semin Fetal Neonatal Med 2010; 15: 58–67.

    Article  Google Scholar 

  50. David AL, McIntosh J, Peebles DM, Cook T, Waddington S, Weisz B et al. Recombinant adeno-associated virus-mediated in utero gene transfer gives therapeutic transgene expression in the sheep. Hum Gene Ther 2011; 22: 419–426.

    Article  CAS  Google Scholar 

  51. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143–3150.

    Article  CAS  Google Scholar 

  52. Keller-Wood M, von Reitzenstein M, McCartney J . Is the fetal lung a mineralocorticoid receptor target organ? Induction of cortisol-regulated genes in the ovine fetal lung, kidney and small intestine. Neonatology 2009; 95: 47–60.

    Article  CAS  Google Scholar 

  53. Bucher U, Reid L . Development of the mucus-secreting elements in human lung. Thorax 1961; 16: 219–225.

    Article  CAS  Google Scholar 

  54. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  Google Scholar 

  55. Kumar M, Bradow BP, Zimmerberg J . Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther 2003; 14: 67–77.

    Article  CAS  Google Scholar 

  56. Jeffers SA, Sanders DA, Sanchez A . Covalent modifications of the ebola virus glycoprotein. J Virol 2002; 76: 12463–12472.

    Article  CAS  Google Scholar 

  57. Liu SL, Halbert CL, Miller AD . Jaagsiekte sheep retrovirus envelope efficiently pseudotypes human immunodeficiency virus type 1-based lentiviral vectors. J Virol 2004; 78: 2642–2647.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Antoneta Radu for preparing lung tissues for stereological analysis, Mr Keith Alcorn for technical assistance with surgical procedures, Ms Lauren Robinson for performing western immunoblots and quantitative morphometry. This study was funded by the Shanahan Family Cystic Fibrosis Foundation and the National Institute of Health (P30DK047757-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Davey.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davey, M., Zoltick, P., Todorow, C. et al. Jaagsiekte sheep retrovirus pseudotyped lentiviral vector-mediated gene transfer to fetal ovine lung. Gene Ther 19, 201–209 (2012). https://doi.org/10.1038/gt.2011.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.83

Keywords

This article is cited by

Search

Quick links