Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene-based therapies for dominantly inherited retinopathies

Abstract

In light of the elucidation of the molecular pathogenesis of some dominantly inherited retinal degenerations over the past two decades, it is timely to explore possible means of therapeutic intervention for such diseases. However, the presence of significant levels of intergenic and intragenic genetic heterogeneity in this group of dominant conditions represents a barrier to the development of therapies focused on correcting the primary genetic defect. More than 60 genes have been implicated in dominant retinopathies and indeed over 150 different mutations in the rhodopsin gene alone have been identified in patients with autosomal dominant retinitis pigmentosa. Employing next-generation sequencing to characterise populations of retinal degeneration patients genetically over the coming years will beyond doubt serve to highlight further the immense genetic heterogeneity inherent in this group of disorders. Such diversity in genetic aetiologies has promoted the search for therapeutic solutions for dominantly inherited retinopathies that are independent of disease-causing mutations. The various approaches being considered to provide mutation-independent therapies for these dominant conditions will be discussed in the review, as will the preclinical data supporting the further development of such strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Bhattacharya SS, Wright AF, Clayton JF, Price WH, Phillips CI, McKeown CM et al. Close genetic linkage between X-linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe L1.28. Nature 1984; 309: 253–255.

    Article  CAS  PubMed  Google Scholar 

  2. Bowne SJ, Sullivan LS, Koboldt DC, Ding L, Fulton R, Abbott RM et al. Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. Invest Ophthalmol Vis Sci 2011; 52: 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 2009; 106: 19096–19101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayuso C, Millan JM . Retinitis pigmentosa and allied conditions today: a paradigm of translational research. Genome Med 2010; 2: 34.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Farrar GJ, Kenna PF, Humphries P . On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 2002; 21: 857–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mendes HF, van der Spuy J, Chapple JP, Cheetham ME . Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 2005; 11: 177–185.

    Article  CAS  PubMed  Google Scholar 

  7. Millington-Ward S, O'Neill B, Tuohy G, Al-Jandal N, Kiang AS, Kenna PF et al. Strategems in vitro for gene therapies directed to dominant mutations. Hum Mol Genet 1997; 6: 1415–1426.

    Article  CAS  PubMed  Google Scholar 

  8. Hauswirth WW, Lewin AS . Ribozyme uses in retinal gene therapy. Prog Retin Eye Res 2000; 19: 689–710.

    Article  CAS  PubMed  Google Scholar 

  9. Kiang AS, Palfi A, Ader M, Kenna PF, Millington-Ward S, Clark G et al. Toward a gene therapy for dominant disease: validation of an RNA interference-based mutation-independent approach. Mol Ther 2005; 12: 555–561.

    Article  CAS  PubMed  Google Scholar 

  10. Gorbatyuk M, Justilien V, Liu J, Hauswirth WW, Lewin AS . Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp Eye Res 2007; 84: 44–52.

    Article  CAS  PubMed  Google Scholar 

  11. O′Reilly M, Palfi A, Chadderton N, Millington-Ward S, Ader M, Cronin T et al. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 2007; 81: 127–135.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chadderton N, Millington-Ward S, Palfi A, O'Reilly M, Tuohy G, Humphries MM et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol Ther 2009; 17: 593–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Millington-Ward S, Chadderton N, O′Reilly M, Palfi A, Goldmann T, Kilty C et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 2011; 19: 642–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mussolino C, Sanges D, Marrocco E, Bonetti C, Di Vicino U, Marigo V et al. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol Med 2011; 3: 118–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palfi A, Ader M, Kiang AS, Millington-Ward S, Clark G, O'Reilly M et al. RNAi-based suppression and replacement of RDS-peripherin in retinal organotypic culture. Hum Mutat 2006; 27: 260–268.

    Article  CAS  PubMed  Google Scholar 

  16. Georgiadis A, Tschernutter M, Bainbridge JWB, Robbie SJ, McIntosh J, Nathwani AC et al. AAV-mediated knockdown of peripherin-2 in vivo using miRNA-based hairpins. Gene Therapy 2010; 17: 486–493.

    Article  CAS  PubMed  Google Scholar 

  17. Takayama KM, Inouye M . Antisense RNA. Crit Rev Biochem Mol Biol 1990; 25: 155–184.

    Article  CAS  PubMed  Google Scholar 

  18. Bass BL, Cech TR . Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. Nature 1984; 308: 820–826.

    Article  CAS  PubMed  Google Scholar 

  19. Fire A, Xu S, Montgomery MK, Kostas SA Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  PubMed  Google Scholar 

  20. Jaskiewicz L, Filipowicz W . Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol 2008; 320: 77–97.

    CAS  PubMed  Google Scholar 

  21. Dykxhoorn DM, Lieberman J . The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Ann Rev Med 2005; 56: 401–423.

    Article  CAS  PubMed  Google Scholar 

  22. de Fougerolles A, Vornlocher HP, Maraganore J . Lieberman mechanism of RNA interference in mammalian cells. Nat Rev Drug Discov 2007; 6: 443–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan S, Guschin D, Davalos A, Lee YL, Snowden AW, Jouvenot Y . Zinc-finger protein-targeted gene regulation: genome-wide single-gene specificity. Proc Natl Acad Sci USA 2003; 100: 11997–12002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Händel EM, Cathomen T . Zinc-finger nuclease based genome surgery: it's all about specificity. Curr Gene Ther 2011; 11: 28–37.

    Article  PubMed  Google Scholar 

  25. Akiyama H, Kachi S, Silva RL, Umeda N, Hackett SF, McCauley D . Intraocular injection of an aptamer that binds PDGF-B: a potential treatment for proliferative retinopathies. J Cell Physiol 2006; 207: 407–412.

    Article  CAS  PubMed  Google Scholar 

  26. Lv F, Qiu Y, Zhang Y, Liu S, Shi J, Liu Y et al. Adeno-associated virus-mediated anti-DR5 chimeric antibody expression suppresses human tumor growth in nude mice. Cancer Lett 2011; 302: 119–127.

    Article  CAS  PubMed  Google Scholar 

  27. Davis D, Stokoe D . Zinc finger nucleases as tools to understand and treat human diseases. BMC Med 2010; 8: 42.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vandenberghe LH, Wilson JM, Gao G . Tailoring the AAV vector capsid for gene therapy. Gene Therapy 2009; 16: 311–319.

    Article  CAS  PubMed  Google Scholar 

  29. Surace EM, Auricchio A . Versatility of AAV vectors for retinal gene transfer. Vision Res 2008; 48: 353–359.

    Article  CAS  PubMed  Google Scholar 

  30. Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D . Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003; 7: 774–781.

    Article  CAS  PubMed  Google Scholar 

  31. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  PubMed  Google Scholar 

  32. Allocca M, Musolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M et al. Novel adeno-associated virus serotypes efficiently transducer murine photoreceptors. J Virol 2007; 81: 11372–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  34. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008; 105: 15112–15117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374: 1597–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber′s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643–650.

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh A, Yue Y, Duan D . Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum Gene Ther 2011; 22: 77–83.

    Article  CAS  PubMed  Google Scholar 

  39. Li T, Snyder WK, Olsson JE, Dryja TP . Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci USA 1996; 93: 14176–14181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Humphries MM, Rancourt D, Farrar GJ, Kenna P, Hazel M, Bush RA et al. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet 1997; 15: 216–219.

    Article  CAS  PubMed  Google Scholar 

  41. Palfi A, Millington-Ward S, Chadderton N, O'Reilly M, Goldmann T, Humphries MM et al. Adeno-associated virus-mediated rhodopsin replacement provides therapeutic benefit in mice with a targeted disruption of the rhodopsin gene. Hum Gene Ther 2010; 21: 311–323.

    Article  CAS  PubMed  Google Scholar 

  42. Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, Arar K et al. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 2009; 27: 478–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–247.

    Article  CAS  PubMed  Google Scholar 

  44. Feng X, Zhao P, He Y, Zuo Z . Allele-specific silencing of Alzheimer's disease genes: the amyloid precursor protein genes witht Swedish or London mutations. Gene 2006; 12: 68–74.

    Article  Google Scholar 

  45. Lewin AS, Drenser KA, Hauswirth WW, Nishikawa S, Yasumura D, Flannery JG et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med 1998; 4: 967–971.

    Article  CAS  PubMed  Google Scholar 

  46. Tessitore A, Parisi F, Denti MA, Allocca M, Di Vicino U, Domenici L et al. Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model. Mol Ther 2006; 14: 692–699.

    Article  CAS  PubMed  Google Scholar 

  47. Shimayama T, Nishikawa S, Taira K . Generality of the NUX rule: kinetic analysis of the results of systematic mutation in the trinucleotide at the cleavage site of hammerhead ribozymes. Biochemistry 1995; 34: 3649–3654.

    Article  CAS  PubMed  Google Scholar 

  48. Mendes HF, van der Spuy J, Chapple JP . Cheetham ME Mechanisms of cell ceath in rhodopsin retinits pigmentosa: implication for therapy. Trends Mol Med 2005; 11: 177–185.

    Article  CAS  PubMed  Google Scholar 

  49. Mao H, Thomas Jr J, Schwein A, Shabashvili A, Hauswirth WW, Gorbatyuk MS et al. AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa. Hum Gene Ther 2010; 22: 567–575.

    Article  PubMed Central  Google Scholar 

  50. Gu JJ, Tolin AK, Jain J, Huang H, Santiago L, Mitchell BS . Targeted disruption of the inosine 5′-monophosphate dehydrogenase type I gene in mice. Mol Cell Biol 2003; 23: 6702–6712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tam LC, Kiang AS, Kennan A, Kenna PF, Chadderton N, Ader M et al. Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). Hum Mol Genet 2008; 17: 2084–2100.

    Article  CAS  PubMed  Google Scholar 

  52. Lanni C, Stanga S, Racchi M, Govoni S . The expanding universe of neurotrophic factors: therapeutic potential in aging and age-associated disorders. Curr Pharm Des 2010; 16: 698–717.

    Article  CAS  PubMed  Google Scholar 

  53. Yang Y, Mohand-Said S, Danan A, Simonutti M, Fontaine V, Clerin E et al. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol Ther 2009; 17: 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haruta M, Bush RA, Kjellstrom S, Vijayasarathy C, Zeng Y, Le YZ et al. Depleting Rac1 in mouse rod photoreceptors protects them from photo-oxidative stress without affecting their structure or function. Proc Natl Acad Sci USA 2009; 106: 9397–9402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Samardzija M, Wenzel A, Thiersch M, Frigg R, Remé C, Grimm C . Caspase-1 ablation protects photoreceptors in a model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2006; 47: 5181–5190.

    Article  PubMed  Google Scholar 

  56. Nagai Y, Fujikake N, Popiel HA, Wada K . Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases. Curr Pharm Biotechnol 2010; 11: 188–197.

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Tao W, Luo L, Huang D, Kauper K, Stabila P et al. CNTF induces regeneration of cone outer segments in a rat model of retinal degeneration. PLoS One 2010; 5: e9495.

    Article  PubMed  PubMed Central  Google Scholar 

  58. McGee Sanftner LH, Abel H, Hauswirth WW, Flannery JG . Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther 2001; 4: 622–629.

    Article  CAS  PubMed  Google Scholar 

  59. Green ES, Rendahl KG, Zhou S, Ladner M, Coyne M, Srivastava R et al. Two animal models of retinal degeneration are rescued by recombinant adeno-associated virus-mediated production of FGF-5 and FGF-18. Mol Ther 2001; 3: 507–515.

    Article  CAS  PubMed  Google Scholar 

  60. Gregory-Evans K, Chang F, Hodges MD, Gregory-Evans CY . Ex vivo gene therapy using intravitreal injection of GDNF-secreting mouse embryonic stem cells in a rat model of retinal degeneration. Mol Vis 2009; 15: 962–973.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Buch RA, Lei B, Tao W, Raz D, Chan CC, Cox TA et al. Encapsulated cell-based intraocular delivery of ciliary neurotrophic factor in mormal rabbit: dose-dependent effects on ERG and retinal histology. Invest Ophthalmol Vis Sci 2004; 45: 2420–2430.

    Article  Google Scholar 

  62. LaVail MM, Yasumura D, Matthes MT, Lau-Villacorta C, Unoki K, Sung CH et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998; 39: 592–602.

    CAS  PubMed  Google Scholar 

  63. Chong NH, Alexander RA, Waters L, Barnett KC, Bird AC, Luthert PJ . Repeated injections of a ciliary neurotrophic factor analogue leading to long-term photoreceptor survival in hereditary retinal degeneration. Invest Ophthalmol Vis Sci 1999; 40: 1298–1305.

    CAS  PubMed  Google Scholar 

  64. Rhee KD, Ruiz A, Duncan JL, Hauswirth WW, Lavail MM, Bok D et al. Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2007; 48: 1389–1400.

    Article  PubMed  Google Scholar 

  65. Buch PK, MacLaren RE, Durán Y, Balaggan KS, MacNeil A, Schlichtenbrede FC et al. In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther 2006; 14: 700–709.

    Article  CAS  PubMed  Google Scholar 

  66. Komeima K, Rogers BS, Campochiaro PA . Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa. J Cell Physiol 2007; 213: 809–815.

    Article  CAS  PubMed  Google Scholar 

  67. Lu L, Oveson BC, Jo YJ, Lauer TW, Usui S, Komeima K et al. Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxid Redox Signal 2009; 11: 715–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Usui S, Oveson BC, Lee SY, Jo YJ, Yoshida T, Miki A et al. NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. J Neurochem 2009; 110: 1028–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Levéillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz A, Clérin E et al. Identification and characterization of rod-derived cone viability factor. Nat Genet 2004; 36: 755–759.

    Article  PubMed  Google Scholar 

  70. Yang Y, Mohand-Said S, Danan A, Simonutti M, Fontaine V, Clérin E et al. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol Ther 2009; 17: 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fridlich R, Delalande F, Jaillard C, Lu J, Poidevin L, Cronin T et al. The thioredoxin-like protein rod-derived cone viability factor (RdCVFL) interacts with TAU and inhibits its phosphorylation in the retina. Mol Cell Proteomics 2009; 8: 1206–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kong L, Zhou X, Li F, Yodoi J, McGinnis J, Cao W . Neuroprotective effect of overexpression of thioredoxin on photoreceptor degeneration in Tubby mice. Neurobiol Dis 2010; 38: 446–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin JH, Lavail MM . Misfolded proteins and retinal dystrophies. Adv Exp Med Biol 2010; 664: 115–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arawaka S, Machiya Y, Kato T . Heat shock proteins as suppressors of accumulation of toxic prefibrillar intermediates and misfolded protein in neurodegenerative diseases. Curr Pharm Biotechnol 2010; 11: 158–166.

    Article  CAS  PubMed  Google Scholar 

  75. Sajjad MU, Samson B, Wyttenback A . Heat shock proteins: therapeutic drug targets for chronic neurodegeneration? Curr Pharm Biotechnol 2010; 11: 198–215.

    Article  CAS  PubMed  Google Scholar 

  76. Gorbatyuk MS, Knox T, LaVail MM Gorbatyuk OS, Noorwez SM, Hauswirth WW et al. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci USA 2010; 107: 5961–5966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tam LC, Kiang AS, Campbell M, Keaney J, Farrar GJ, Humphries MM et al. Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Hum Mol Genet 2010; 19: 4421–4436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J Farrar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrar, G., Millington-Ward, S., Chadderton, N. et al. Gene-based therapies for dominantly inherited retinopathies. Gene Ther 19, 137–144 (2012). https://doi.org/10.1038/gt.2011.172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.172

Keywords

This article is cited by

Search

Quick links