Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nonviral gene delivery of erythropoietin by mesenchymal stromal cells

Abstract

Erythropoietin (EPO) acts on erythroblasts in the bone marrow (BM) to stimulate the formation of red blood cells. In this study, we wanted to determine whether BM-derived mesenchymal stromal cells (MSCs) can be used as cellular vehicles to deliver EPO in mice without the use of viral vectors. After isolation and characterization of murine MSCs (mMSCs), different transient transfection procedures were compared for their efficacy of gene transfer of the pEGFP-N2 plasmid. Nucleofection outperformed magnetofection and lipofection. Stably transfected mMSCs were generated by selection with G418-disulfate and single-cell-colony-forming unit (sc-CFU) assays without changes in their proliferation capacity and osteogenic/adipogenic differentiation potential. Next, murine EPO was stably introduced into mMSCs by nucleofection of a plasmid encoding the epo and egfp genes. Intraperitoneal transplantation of EPO-expressing mMSCs increased serum EPO levels, hematocrit and hemoglobin of C57BL/6 mice within 1 week. The hematocrit remained elevated for 5 weeks, but production of antibodies against both transgenes was detected in the hosts and serum EPO levels normalized. Our results suggest that nonviral gene delivery into MSCs can be used to enhance the known beneficial effects MSCs by additional production of therapeutic factors like EPO in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA 1985; 82: 7580–7584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 2002; 22: 10291–10301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arcasoy MO . The non-haematopoietic biological effects of erythropoietin. Br J Haematol 2008; 141: 14–31.

    Article  CAS  PubMed  Google Scholar 

  4. Osada S, Ebihara I, Setoguchi Y, Takahashi H, Tomino Y, Koide H . Gene therapy for renal anemia in mice with polycystic kidney using an adenovirus vector encoding the human erythropoietin gene. Kidney Int 1999; 55: 1234–1240.

    Article  CAS  PubMed  Google Scholar 

  5. Oh TK, Quan GH, Kim HY, Park F, Kim ST . Correction of anemia in uremic rats by intramuscular injection of lentivirus carrying an erythropoietin gene. Am J Nephrol 2006; 26: 326–334.

    Article  CAS  PubMed  Google Scholar 

  6. Daga A, Muraglia A, Quarto R, Cancedda R, Corte G . Enhanced engraftment of EPO-transduced human bone marrow stromal cells transplanted in a 3D matrix in non-conditioned NOD/SCID mice. Gene Therapy 2002; 9: 915–921.

    Article  CAS  PubMed  Google Scholar 

  7. Voutetakis A, Zheng C, Cotrim AP, Mineshiba F, Afione S, Roescher N et al. AAV5-mediated gene transfer to the parotid glands of non-human primates. Gene Therapy 2010; 17: 50–60.

    Article  CAS  PubMed  Google Scholar 

  8. Svensson EC, Black HB, Dugger DL, Tripathy SK, Goldwasser E, Hao Z et al. Long-term erythropoietin expression in rodents and non-human primates following intramuscular injection of a replication-defective adenoviral vector. Hum Gene Ther 1997; 8: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  9. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  10. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 1995; 92: 4857–4861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanz L, Compte M, Guijarro-Muñoz I, Álvarez-Vallina L . Non-hematopoietic stem cells as factories for in vivo therapeutic protein production. Gene Therapy 2011; e-pub ahead of print 12 May 2011; doi:10.1038/gt.2011.68.

    Article  PubMed  Google Scholar 

  12. Caplan AI . Why are MSCs therapeutic? New data: new insight. J Pathol 2009; 217: 318–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  14. Bartholomew A, Patil S, Mackay A, Nelson M, Buyaner D, Hardy W et al. Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther 2001; 12: 1527–1541.

    Article  CAS  PubMed  Google Scholar 

  15. Yokoo T, Fukui A, Matsumoto K, Ohashi T, Sado Y, Suzuki H et al. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells. Transplantation 2008; 85: 1654–1658.

    Article  CAS  PubMed  Google Scholar 

  16. Eliopoulos N, Al Khaldi A, Crosato M, Lachapelle K, Galipeau J . A neovascularized organoid derived from retrovirally engineered bone marrow stroma leads to prolonged in vivo systemic delivery of erythropoietin in nonmyeloablated, immunocompetent mice. Gene Therapy 2003; 10: 478–489.

    Article  CAS  PubMed  Google Scholar 

  17. Copland IB, Jolicoeur EM, Gillis MA, Cuerquis J, Eliopoulos N, Annabi B et al. Coupling erythropoietin secretion to mesenchymal stromal cells enhances their regenerative properties. Cardiovasc Res 2008; 79: 405–415.

    Article  CAS  PubMed  Google Scholar 

  18. Eliopoulos N, Gagnon RF, Francois M, Galipeau J . Erythropoietin delivery by genetically engineered bone marrow stromal cells for correction of anemia in mice with chronic renal failure. J Am Soc Nephrol 2006; 17: 1576–1584.

    Article  CAS  PubMed  Google Scholar 

  19. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005; 11: 96–104.

    Article  CAS  PubMed  Google Scholar 

  20. Eliopoulos N, Lejeune L, Martineau D, Galipeau J . Human-compatible collagen matrix for prolonged and reversible systemic delivery of erythropoietin in mice from gene-modified marrow stromal cells. Mol Ther 2004; 10: 741–748.

    Article  CAS  PubMed  Google Scholar 

  21. Campeau PM, Rafei M, Francois M, Birman E, Forner KA, Galipeau J . Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients. Mol Ther 2009; 17: 369–372.

    Article  CAS  PubMed  Google Scholar 

  22. Phillips JE, Gersbach CA, Garcia AJ . Virus-based gene therapy strategies for bone regeneration. Biomaterials 2007; 28: 211–229.

    Article  CAS  PubMed  Google Scholar 

  23. Gothelf A, Hojman P, Gehl J . Therapeutic levels of erythropoietin (EPO) achieved after gene electrotransfer to skin in mice. Gene Therapy 2010; 17: 1077–1084.

    Article  CAS  PubMed  Google Scholar 

  24. Gothelf A, Eriksen J, Hojman P, Gehl J . Duration and level of transgene expression after gene electrotransfer to skin in mice. Gene Therapy 2010; 17: 839–845.

    Article  CAS  PubMed  Google Scholar 

  25. Eguchi H, Kuroiwa Y, Matsui A, Sada M, Nagaya N, Kawano S . Intra-bone marrow cotransplantation of donor mesenchymal stem cells in pig-to-NOD/SCID mouse bone marrow transplantation facilitates short-term xenogeneic hematopoietic engraftment. Transplant Proc 2008; 40: 574–577.

    Article  CAS  PubMed  Google Scholar 

  26. Coyne TM, Marcus AJ, Reynolds K, Black IB, Woodbury D . Disparate host response and donor survival after the transplantation of mesenchymal or neuroectodermal cells to the intact rodent brain. Transplantation 2007; 84: 1507–1516.

    Article  PubMed  Google Scholar 

  27. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5: 54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozawa T, Toba K, Suzuki H, Kato K, Iso Y, Akutsu Y et al. Single-dose intravenous administration of recombinant human erythropoietin is a promising treatment for patients with acute myocardial infarction. Circ J 2010; 74: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  29. Price MJ, Chou CC, Frantzen M, Miyamoto T, Kar S, Lee S et al. Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 2006; 111: 231–239.

    Article  PubMed  Google Scholar 

  30. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007; 110: 1362–1369.

    Article  CAS  PubMed  Google Scholar 

  31. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J . Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 2005; 106: 4057–4065.

    Article  CAS  PubMed  Google Scholar 

  32. Sauerborn M, Brinks V, Jiskoot W, Schellekens H . Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci 2010; 31: 53–59.

    Article  CAS  PubMed  Google Scholar 

  33. Schellekens H . Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transplant 2005; 20 (Suppl 6): vi3–vi9.

    Article  CAS  PubMed  Google Scholar 

  34. McMahon JM, Conroy S, Lyons M, Greiser U, O'shea C, Strappe P et al. Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev 2006; 15: 87–96.

    Article  CAS  PubMed  Google Scholar 

  35. Colleoni S, Donofrio G, Lagutina I, Duchi R, Galli C, Lazzari G . Establishment, differentiation, electroporation, viral transduction, and nuclear transfer of bovine and porcine mesenchymal stem cells. Cloning Stem Cells 2005; 7: 154–166.

    Article  CAS  PubMed  Google Scholar 

  36. Aslan H, Zilberman Y, Arbeli V, Sheyn D, Matan Y, Liebergall M et al. Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng 2006; 12: 877–889.

    Article  CAS  PubMed  Google Scholar 

  37. Ferreira E, Potier E, Logeart-Avramoglou D, Salomskaite-Davalgiene S, Mir LM, Petite H . Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Therapy 2008; 15: 537–544.

    Article  CAS  PubMed  Google Scholar 

  38. Aluigi M, Fogli M, Curti A, Isidori A, Gruppioni E, Chiodoni C et al. Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 24: 454–461.

    Article  PubMed  Google Scholar 

  39. Nakashima S, Matsuyama Y, Nitta A, Sakai Y, Ishiguro N . Highly efficient transfection of human marrow stromal cells by nucleofection. Transplant Proc 2005; 37: 2290–2292.

    Article  CAS  PubMed  Google Scholar 

  40. Zaragosi LE, Billon N, Ailhaud G, Dani C . Nucleofection is a valuable transfection method for transient and stable transgene expression in adipose tissue-derived stem cells. Stem Cells 2007; 25: 790–797.

    Article  CAS  PubMed  Google Scholar 

  41. Gheisari Y, Soleimani M, Azadmanesh K, Zeinali S . Multipotent mesenchymal stromal cells: optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy 2008; 10: 815–823.

    Article  CAS  PubMed  Google Scholar 

  42. Laker C, Meyer J, Schopen A, Friel J, Heberlein C, Ostertag W et al. Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation. J Virol 1998; 72: 339–348.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ . Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004; 103: 1662–1668.

    Article  CAS  PubMed  Google Scholar 

  44. Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ . Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 2005; 320: 269–276.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sonja Blumenau, Anna Hegele, Jasmin Jamal el-Din, Melanie Lange and Katharina Stohlmann for their excellent technical assistance. We also thank Benjamin Larson and Dina Gaupp for their support with cartilage differentiation. This study was supported by grants from the BMBF, Research Grant No. 01GN0508, the Berlin-Brandenburg Center for Regenerative Therapies (BCRT) and the DFG Excellence Cluster NeuroCure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Priller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheibe, F., Gladow, N., Mergenthaler, P. et al. Nonviral gene delivery of erythropoietin by mesenchymal stromal cells. Gene Ther 19, 550–560 (2012). https://doi.org/10.1038/gt.2011.139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.139

Keywords

This article is cited by

Search

Quick links