Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced pseudotyping efficiency of HIV-1 lentiviral vectors by a rabies/vesicular stomatitis virus chimeric envelope glycoprotein

Abstract

Rabies virus glycoprotein (RVG) can pseudotype lentiviral vectors, although at a lower efficiency to that of vesicular stomatitis virus glycoprotein (VSVG). Transduction with VSVG-pseudotyped vectors of rodent central nervous system (CNS) leads to local neurotropic gene transfer, whereas with RVG-pseudotyped vectors additional disperse transduction of neurons located at distal efferent sites occurs via axonal retrograde transport. Attempts to produce high-titre RVG-pseudotyped lentiviral vectors for preclinical and clinical trials has to date been problematic. We have constructed several chimeric RVG/VSVG glycoproteins and found that a construct bearing the external/transmembrane domain of RVG and the cytoplasmic domain of VSVG shows increased incorporation onto HIV-1 lentiviral particles and has increased infectivity in vitro in 293T cells and in differentiated neuronal cell lines of human, rat and murine origin. Stereotactic application of vector pseudotyped with this RVG/VSVG chimera in the rat striatum resulted in efficient gene transfer at the site of injection showing both neuronal and glial tropism. Distal neuronal transduction in the substantia nigra, thalamus and olfactory bulb via retrograde axonal transport also occurs after intrastriatal administration of chimera-pseudotyped vectors at similar levels to that observed with a RVG-pseudotyped vector. This is the first report of distal transduction in the olfactory bulb. The enhanced pseudotyping with this envelope should enable easier production of higher-titre pseudotyped lentiviral vectors that exhibit efficient local and dispersed neuronal transduction in the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Canivet M, Hoffman AD, Hardy D, Sernatinger J, Levy JA . Replication of HIV-1 in a wide variety of animal cells following phenotypic mixing with murine retroviruses. Virology 1990; 178: 543–551.

    Article  CAS  Google Scholar 

  2. Lusso P, di Marzo Veronese F, Ensoli B, Franchini G, Jemma C, DeRocco SE et al. Expanded HIV-1 cellular tropism by phenotypic mixing with murine endogenous retroviruses. Science 1990; 247: 848–852.

    Article  CAS  Google Scholar 

  3. Chesebro B, Wehrly K, Maury W . Differential expression in human and mouse cells of human immunodeficiency virus pseudotyped by murine retroviruses. J Virol 1990; 64: 4553–4557.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Spector DH, Wade E, Wright DA, Koval V, Clark C, Jaquish D et al. Human immunodeficiency virus pseudotypes with expanded cellular and species tropism. J Virol 1990; 64: 2298–2308.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu ZH, Chen SS, Huang AS . Phenotypic mixing between human immunodeficiency virus and vesicular stomatitis virus or herpes simplex virus. J Acquir Immune Defic Syndr 1990; 3: 215–219.

    CAS  PubMed  Google Scholar 

  6. Cronin J, Zhang XY, Reiser J . Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 2005; 5: 387–398.

    Article  CAS  Google Scholar 

  7. Bartz SR, Rogel ME, Emerman M . Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J Virol 1996; 70: 2324–2331.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10: 2109–2121.

    Article  CAS  Google Scholar 

  9. Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V et al. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Therapy 1999; 6: 1808–1818.

    Article  CAS  Google Scholar 

  10. Wong LF, Azzouz M, Walmsley LE, Askham Z, Wilkes FJ, Mitrophanous KA et al. Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol Ther 2004; 9: 101–111.

    Article  CAS  Google Scholar 

  11. Mentis GZ, Gravell M, Hamilton R, Shneider NA, O′Donovan MJ, Schubert M . Transduction of motor neurons and muscle fibers by intramuscular injection of HIV-1-based vectors pseudotyped with select rabies virus glycoproteins. J Neurosci Methods 2006; 157: 208–217.

    Article  CAS  Google Scholar 

  12. Kato S, Inoue K, Kobayashi K, Yasoshima Y, Miyachi S, Inoue S et al. Efficient gene transfer via retrograde transport in rodent and primate brains using a human immunodeficiency virus type 1-based vector pseudotyped with rabies virus glycoprotein. Hum Gene Ther 2007; 18: 1141–1151.

    Article  CAS  Google Scholar 

  13. Federici T, Kutner R, Zhang XY, Kuroda H, Tordo N, Boulis NM et al. Comparative analysis of HIV-1-based lentiviral vectors bearing lyssavirus glycoproteins for neuronal gene transfer. Genet Vaccines Ther 2009; 7: 1.

    Article  Google Scholar 

  14. Mochizuki H, Schwartz JP, Tanaka K, Brady RO, Reiser J . High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 1998; 72: 8873–8883.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Abelseth MK . An attenuated rabies vaccine for domestic animals produced in tissue culture. Can Vet J 1964; 5: 279–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Azzouz M, Le T, Ralph GS, Walmsley L, Monani UR, Lee DC et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 2004; 114: 1726–1731.

    Article  CAS  Google Scholar 

  17. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 2004; 429: 413–417.

    Article  CAS  Google Scholar 

  18. Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 2005; 11: 429–433.

    Article  CAS  Google Scholar 

  19. Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, Mazarakis ND . Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther 2006; 17: 1–9.

    Article  CAS  Google Scholar 

  20. Backovic M, Jardetzky TS . Class III viral membrane fusion proteins. Curr Opin Struct Biol 2009; 19: 189–196.

    Article  CAS  Google Scholar 

  21. Gaudin Y, Ruigrok RW, Tuffereau C, Knossow M, Flamand A . Rabies virus glycoprotein is a trimer. Virology 1992; 187: 627–632.

    Article  CAS  Google Scholar 

  22. Doms RW, Keller DS, Helenius A, Balch WE . Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J Cell Biol 1987; 105: 1957–1969.

    Article  CAS  Google Scholar 

  23. Roche S, Bressanelli S, Rey FA, Gaudin Y . Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 2006; 313: 187–191.

    Article  CAS  Google Scholar 

  24. Roche S, Rey FA, Gaudin Y, Bressanelli S . Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 2007; 315: 843–848.

    Article  CAS  Google Scholar 

  25. Rose JK, Doolittle RF, Anilionis A, Curtis PJ, Wunner WH . Homology between the glycoproteins of vesicular stomatitis virus and rabies virus. J Virol 1982; 43: 361–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Roche S, Albertini AA, Lepault J, Bressanelli S, Gaudin Y . Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited. Cell Mol Life Sci 2008; 65: 1716–1728.

    Article  CAS  Google Scholar 

  27. Rose JK, Welch WJ, Sefton BM, Esch FS, Ling NC . Vesicular stomatitis virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH terminus. Proc Natl Acad Sci USA 1980; 77: 3884–3888.

    Article  CAS  Google Scholar 

  28. Warrens AN, Jones MD, Lechler RI . Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 1997; 186: 29–35.

    Article  CAS  Google Scholar 

  29. Ganser-Pornillos BK, Yeager M, Sundquist WI . The structural biology of HIV assembly. Curr Opin Struct Biol 2008; 18: 203–217.

    Article  CAS  Google Scholar 

  30. Li S, Hill CP, Sundquist WI, Finch JT . Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 2000; 407: 409–413.

    Article  CAS  Google Scholar 

  31. Briggs JA, Wilk T, Welker R, Krausslich HG, Fuller SD . Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 2003; 22: 1707–1715.

    Article  CAS  Google Scholar 

  32. Greene LA, Tischler AS . Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 1976; 73: 2424–2428.

    Article  CAS  Google Scholar 

  33. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS . Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 1978; 38 (11 Pt 1): 3751–3757.

    CAS  PubMed  Google Scholar 

  34. Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, Shaw IT et al. Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 1992; 194: 209–221.

    Article  CAS  Google Scholar 

  35. Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R . Comparison of lentiviral vector titration methods. BMC Biotechnol 2006; 6: 34.

    Article  Google Scholar 

  36. Funke S, Maisner A, Muhlebach MD, Koehl U, Grez M, Cattaneo R et al. Targeted cell entry of lentiviral vectors. Mol Ther 2008; 16: 1427–1436.

    Article  CAS  Google Scholar 

  37. Morimoto K, Hooper DC, Carbaugh H, Fu ZF, Koprowski H, Dietzschold B . Rabies virus quasispecies: implications for pathogenesis. Proc Natl Acad Sci USA 1998; 95: 3152–3156.

    Article  CAS  Google Scholar 

  38. Ubeda-Banon I, Novejarque A, Mohedano-Moriano A, Pro-Sistiaga P, de la Rosa-Prieto C, Insausti R et al. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neurosci 2007; 8: 103.

    Article  Google Scholar 

  39. Ikeda Y, Takeuchi Y, Martin F, Cosset FL, Mitrophanous K, Collins M . Continuous high-titer HIV-1 vector production. Nat Biotechnol 2003; 21: 569–572.

    Article  CAS  Google Scholar 

  40. Lesch HP, Turpeinen S, Niskanen EA, Mahonen AJ, Airenne KJ, Yla-Herttuala S . Generation of lentivirus vectors using recombinant baculoviruses. Gene Therapy 2008; 15: 1280–1286.

    Article  CAS  Google Scholar 

  41. Lesch HP, Laitinen A, Peixoto C, Vicente T, Makkonen KE, Laitinen L et al. Production and purification of lentiviral vectors generated in 293T suspension cells with baculoviral vectors. Gene Therapy 2011; 18: 531–538.

    Article  CAS  Google Scholar 

  42. Hoffmann M, Wu YJ, Gerber M, Berger-Rentsch M, Heimrich B, Schwemmle M et al. Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity. J Gen Virol 2010; 91 (Pt 11): 2782–2793.

    Article  CAS  Google Scholar 

  43. DePolo NJ, Reed JD, Sheridan PL, Townsend K, Sauter SL, Jolly DJ et al. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2000; 2: 218–222.

    Article  CAS  Google Scholar 

  44. Pichlmair A, Diebold SS, Gschmeissner S, Takeuchi Y, Ikeda Y, Collins MK et al. Tubulovesicular structures within vesicular stomatitis virus G protein-pseudotyped lentiviral vector preparations carry DNA and stimulate antiviral responses via Toll-like receptor 9. J Virol 2007; 81: 539–547.

    Article  CAS  Google Scholar 

  45. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR . Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 1989; 77: 61–68.

    Article  CAS  Google Scholar 

  46. Follenzi A, Naldini L . Generation of HIV-1 derived lentiviral vectors. Methods Enzymol 2002; 346: 454–465.

    Article  CAS  Google Scholar 

  47. Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM . Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci USA 2001; 98: 11450–11455.

    Article  CAS  Google Scholar 

  48. Kutner RH, Zhang XY, Reiser J . Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 2009; 4: 495–505.

    Article  CAS  Google Scholar 

  49. Lamikanra A, Myers KA, Ferris N, Mitrophanous KA, Carroll MW . In vivo evaluation of an EIAV vector for the systemic genetic delivery of therapeutic antibodies. Gene Therapy 2005; 12: 988–998.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Edward Wright (University College London, London, UK) for the kind gift of the SNB1 anti-rabies virus GP antibody, and Professor Richard Reynolds and Dr Owain Howell for use of and help with fluorescence microscopy to document histological staining of brain sections. We also thank Dr Egle Solito and Enrico Cristante for letting us use several antibodies. This work was funded by a Seventh Framework Programme European Research Council Advanced Grant No. 23314 to NDM supporting DCJC, AT and SME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N D Mazarakis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpentier, D., Vevis, K., Trabalza, A. et al. Enhanced pseudotyping efficiency of HIV-1 lentiviral vectors by a rabies/vesicular stomatitis virus chimeric envelope glycoprotein. Gene Ther 19, 761–774 (2012). https://doi.org/10.1038/gt.2011.124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.124

Keywords

This article is cited by

Search

Quick links