Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induction of protective cytotoxic T-cell responses by a B-cell-based cellular vaccine requires stable expression of antigen

Abstract

B-cell-based cellular vaccines represent a promising approach to active immunotherapy of cancer complementing the use of dendritic cells, especially in pediatric patients and patients with low bone marrow reserves. B cells can be easily prepared in large numbers and readily home to secondary lymphoid organs, the primary site of induction of cytotoxic T lymphocyte (CTL) responses. However, most B-cell-based vaccines tested so far failed to induce functional and protective CTLs in in vivo models. Here, we show that B-cells activated through the toll-like receptor-9 (TLR-9) and CD40 up-regulate surface expression of major histocompatibility complex and costimulatory molecules, produce IL-12, and exhibit potent antigen-presenting properties in vitro. Importantly, although administration of peptide-coated or transiently transfected B cells fails to induce immune responses, therapeutic immunization with low numbers of genetically modified B cells stably expressing antigen results in an induction of functional CTLs and protection against the growth of tumor in an animal model. After activation, B cells partially loose their ability to home to organized lymphoid tissue because of the shedding of CD62L; however, this property can be restored by expression of protease-resistant mutant of CD62L. In summary, the data presented in this report suggest that genetically modified activated B cells represent a promising candidate for a cancer vaccine eliciting functional systemic CTLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CTL:

cytotoxic T lymphocyte

TLR:

toll-like receptor

CpG/CD40-B cells:

B cells activated by CpG and anti-CD40 antibody

TAA:

tumor-associated antigen

LPS:

bacterial lipopolysaccharide

CFSE:

5-(6)-carboxyfluorescein diacetate succinimidyl ester

ICS:

intracellular cytokine staining

PLN and MLN:

peripheral and mesenteric lymph nodes

PP:

Peyer's patches

CD62L-SR:

sheddase-resistant mutant of CD62L

ICAM-1:

intercellular adhesion molecule-1

HEV:

high endothelial venule.

References

  1. Palucka AK, Ueno H, Fay JW, Banchereau J . Taming cancer by inducing immunity via dendritic cells. Immunol Rev 2007; 220: 129–150.

    Article  CAS  Google Scholar 

  2. Ridgway D . The first 1000 dendritic cell vaccinees. Cancer Invest 2003; 21: 873–886.

    Article  Google Scholar 

  3. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ . Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10: 475–480.

    Article  CAS  Google Scholar 

  4. Vulink A, Radford KJ, Melief C, Hart DN . Dendritic cells in cancer immunotherapy. Adv Cancer Res 2008; 99: 363–407.

    Article  CAS  Google Scholar 

  5. Schultze JL, Grabbe S, Bergwelt-Baildon MS . DCs and CD40-activated B cells: current and future avenues to cellular cancer immunotherapy. Trends Immunol 2004; 25: 659–664.

    Article  CAS  Google Scholar 

  6. Coughlin CM, Vance BA, Grupp SA, Vonderheide RH . RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 2004; 103: 2046–2054.

    Article  CAS  Google Scholar 

  7. Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 2001; 61: 8513–8519.

    CAS  PubMed  Google Scholar 

  8. Dagher R, Long LM, Read EJ, Leitman SF, Carter CS, Tsokos M et al. Pilot trial of tumor-specific peptide vaccination and continuous infusion interleukin-2 in patients with recurrent Ewing sarcoma and alveolar rhabdomyosarcoma: an inter-institute NIH study. Med Pediatr Oncol 2002; 38: 158–164.

    Article  Google Scholar 

  9. Shilyansky J, Jacobs P, Doffek K, Sugg SL . Induction of cytolytic T lymphocytes against pediatric solid tumors in vitro using autologous dendritic cells pulsed with necrotic primary tumor. J Pediatr Surg 2007; 42: 54–61.

    Article  Google Scholar 

  10. Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK . Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res 1999; 59: 56–58.

    CAS  PubMed  Google Scholar 

  11. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005; 23: 1407–1413.

    Article  CAS  Google Scholar 

  12. Hel Z . Cancer immunotherapy with activated B cells. In: Hemorhat PL (ed). Cancer and Gene Therapy, 1st edn. Transworld Research Network, 2007, pp 139–153.

    Google Scholar 

  13. Lapointe R, Bellemare-Pelletier A, Housseau F, Thibodeau J, Hwu P . CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res 2003; 63: 2836–2843.

    CAS  PubMed  Google Scholar 

  14. Schultze JL, Michalak S, Seamon MJ, Dranoff G, Jung K, Daley J et al. CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 1997; 100: 2757–2765.

    Article  CAS  Google Scholar 

  15. Bergwelt-Baildon MS, Vonderheide RH, Maecker B, Hirano N, Anderson KS, Butler MO et al. Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells: potential for clinical application. Blood 2002; 99: 3319–3325.

    Article  Google Scholar 

  16. Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K et al. Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol 2002; 169: 2164–2171.

    Article  CAS  Google Scholar 

  17. Gerloni M, Rizzi M, Castiglioni P, Zanetti M . T cell immunity using transgenic B lymphocytes. Proc Natl Acad Sci USA 2004; 101: 3892–3897.

    Article  CAS  Google Scholar 

  18. Heit A, Huster KM, Schmitz F, Schiemann M, Busch DH, Wagner H . CpG-DNA aided cross-priming by cross-presenting B cells. J Immunol 2004; 172: 1501–1507.

    Article  CAS  Google Scholar 

  19. Palena C, Zhu M, Schlom J, Tsang KY . Human B cells that hyperexpress a triad of costimulatory molecules via avipox-vector infection: an alternative source of efficient antigen-presenting cells. Blood 2004; 104: 192–199.

    Article  CAS  Google Scholar 

  20. Zanetti M, Castiglioni P, Rizzi M, Wheeler M, Gerloni M . B lymphocytes as antigen-presenting cell-based genetic vaccines. Immunol Rev 2004; 199: 264–278.

    Article  CAS  Google Scholar 

  21. Zentz C, Wiesner M, Man S, Frankenberger B, Wollenberg B, Hillemanns P et al. Activated B cells mediate efficient expansion of rare antigen-specific T cells. Hum Immunol 2007; 68: 75–85.

    Article  CAS  Google Scholar 

  22. Ahmadi T, Flies A, Efebera Y, Sherr DH . CD40 ligand-activated, antigen-specific B cells are comparable to mature dendritic cells in presenting protein antigens and major histocompatibility complex class I- and class II-binding peptides. Immunology 2008; 124: 129–140.

    Article  CAS  Google Scholar 

  23. Ritchie DS, Yang J, Hermans IF, Ronchese F . B-lymphocytes activated by CD40 ligand induce an antigen-specific anti-tumour immune response by direct and indirect activation of CD8(+) T-cells. Scand J Immunol 2004; 60: 543–551.

    Article  CAS  Google Scholar 

  24. Lee J, Dollins CM, Boczkowski D, Sullenger BA, Nair S . Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing in vitro antigen-specific T-cell responses. Immunology 2008; 125: 229–240.

    Article  CAS  Google Scholar 

  25. Watt V, Ronchese F, Ritchie D . Resting B cells suppress tumor immunity via an MHC class-II dependent mechanism. J Immunother 2007; 30: 323–332.

    Article  CAS  Google Scholar 

  26. Wagner M, Poeck H, Jahrsdoerfer B, Rothenfusser S, Prell D, Bohle B et al. IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J Immunol 2004; 172: 954–963.

    Article  CAS  Google Scholar 

  27. Shirota H, Sano K, Hirasawa N, Terui T, Ohuchi K, Hattori T et al. B cells capturing antigen conjugated with CpG oligodeoxynucleotides induce Th1 cells by elaborating IL-12. J Immunol 2002; 169: 787–794.

    Article  CAS  Google Scholar 

  28. Schultze JL, Michalak S, Lowne J, Wong A, Gilleece MH, Gribben JG et al. Human non-germinal center B cell interleukin (IL)-12 production is primarily regulated by T cell signals CD40 ligand, interferon gamma, and IL-10: role of B cells in the maintenance of T cell responses. J Exp Med 1999; 189: 1–12.

    Article  CAS  Google Scholar 

  29. Dullaers M, Breckpot K, Van Meirvenne S, Bonehill A, Tuyaerts S, Michiels A et al. Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: implications for cancer immunotherapy protocols. Mol Ther 2004; 10: 768–779.

    Article  CAS  Google Scholar 

  30. Valenzuela J, Schmidt C, Mescher M . The roles of IL-12 in providing a third signal for clonal expansion of naive CD8 T cells. J Immunol 2002; 169: 6842–6849.

    Article  CAS  Google Scholar 

  31. Chang J, Cho JH, Lee SW, Choi SY, Ha SJ, Sung YC . IL-12 priming during in vitro antigenic stimulation changes properties of CD8 T cells and increases generation of effector and memory cells. J Immunol 2004; 172: 2818–2826.

    Article  CAS  Google Scholar 

  32. Henry CJ, Ornelles DA, Mitchell LM, Brzoza-Lewis KL, Hiltbold EM . IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol 2008; 181: 8576–8584.

    Article  CAS  Google Scholar 

  33. He Y, Zhang J, Mi Z, Robbins P, Falo Jr LD . Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J Immunol 2005; 174: 3808–3817.

    Article  CAS  Google Scholar 

  34. Zhao LC, Edgar JB, Dailey MO . Characterization of the rapid proteolytic shedding of murine L-selectin. Dev Immunol 2001; 8: 267–277.

    Article  CAS  Google Scholar 

  35. Galkina E, Tanousis K, Preece G, Tolaini M, Kioussis D, Florey O et al. L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J Exp Med 2003; 198: 1323–1335.

    Article  CAS  Google Scholar 

  36. Zou W . Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307.

    Article  CAS  Google Scholar 

  37. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G . Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008; 8: 59–73.

    Article  CAS  Google Scholar 

  38. Breckpot K, Aerts JL, Thielemans K . Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Therapy 2007; 14: 847–862.

    Article  CAS  Google Scholar 

  39. Russo V, Cipponi A, Raccosta L, Rainelli C, Fontana R, Maggioni D et al. Lymphocytes genetically modified to express tumor antigens target DCs in vivo and induce antitumor immunity. J Clin Invest 2007; 117: 3087–3096.

    Article  CAS  Google Scholar 

  40. Hackett PB, Ekker SC, Largaespada DA, McIvor RS . Sleeping beauty transposon-mediated gene therapy for prolonged expression. Adv Genet 2005; 54: 189–232.

    Article  CAS  Google Scholar 

  41. Amoscato AA, Prenovitz DA, Lotze MT . Rapid extracellular degradation of synthetic class I peptides by human dendritic cells. J Immunol 1998; 161: 4023–4032.

    CAS  PubMed  Google Scholar 

  42. Zehn D, Cohen CJ, Reiter Y, Walden P . Extended presentation of specific MHC-peptide complexes by mature dendritic cells compared to other types of antigen-presenting cells. Eur J Immunol 2004; 34: 1551–1560.

    Article  CAS  Google Scholar 

  43. Shen L, Rock KL . Cellular protein is the source of cross-priming antigen in vivo. Proc Natl Acad Sci USA 2004; 101: 3035–3040.

    Article  CAS  Google Scholar 

  44. Stock AT, Mueller SN, van Lint AL, Heath WR, Carbone FR . Cutting edge: prolonged antigen presentation after herpes simplex virus-1 skin infection. J Immunol 2004; 173: 2241–2244.

    Article  CAS  Google Scholar 

  45. Curtsinger JM, Johnson CM, Mescher MF . CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J Immunol 2003; 171: 5165–5171.

    Article  CAS  Google Scholar 

  46. Prlic M, Hernandez-Hoyos G, Bevan MJ . Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. J Exp Med 2006; 203: 2135–2143.

    Article  CAS  Google Scholar 

  47. Williams MA, Bevan MJ . Shortening the infectious period does not alter expansion of CD8 T cells but diminishes their capacity to differentiate into memory cells. J Immunol 2004; 173: 6694–6702.

    Article  CAS  Google Scholar 

  48. Bennett SR, Carbone FR, Toy T, Miller JF, Heath WR . B cells directly tolerize CD8(+) T cells. J Exp Med 1998; 188: 1977–1983.

    Article  CAS  Google Scholar 

  49. Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T . B cells inhibit induction of T cell-dependent tumor immunity. Nat Med 1998; 4: 627–630.

    Article  CAS  Google Scholar 

  50. Reichardt P, Dornbach B, Rong S, Beissert S, Gueler F, Loser K et al. Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood 2007; 110: 1519–1529.

    Article  CAS  Google Scholar 

  51. Evans DE, Munks MW, Purkerson JM, Parker DC . Resting B lymphocytes as APC for naive T lymphocytes: dependence on CD40 ligand/CD40. J Immunol 2000; 164: 688–697.

    Article  CAS  Google Scholar 

  52. Constant S, Schweitzer N, West J, Ranney P, Bottomly K . B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J Immunol 1995; 155: 3734–3741.

    CAS  PubMed  Google Scholar 

  53. Constant SL . B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J Immunol 1999; 162: 5695–5703.

    CAS  PubMed  Google Scholar 

  54. Jaiswal AI, Croft M . CD40 ligand induction on T cell subsets by peptide-presenting B cells: implications for development of the primary T and B cell response. J Immunol 1997; 159: 2282–2291.

    CAS  PubMed  Google Scholar 

  55. Peng SL . Signaling in B cells via toll-like receptors. Curr Opin Immunol 2005; 17: 230–236.

    Article  CAS  Google Scholar 

  56. Bernasconi NL, Onai N, Lanzavecchia A . A role for toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003; 101: 4500–4504.

    Article  CAS  Google Scholar 

  57. Jiang W, Lederman MM, Harding CV, Rodriguez B, Mohner RJ, Sieg SF . TLR9 stimulation drives naive B cells to proliferate and to attain enhanced antigen presenting function. Eur J Immunol 2007; 37: 2205–2213.

    Article  CAS  Google Scholar 

  58. Harshyne LA, Watkins SC, Gambotto A, Barratt-Boyes SM . Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol 2001; 166: 3717–3723.

    Article  CAS  Google Scholar 

  59. Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 2006; 25: 153–162.

    Article  CAS  Google Scholar 

  60. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199: 9–26.

    Article  CAS  Google Scholar 

  61. Springer TA . Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301–314.

    Article  CAS  Google Scholar 

  62. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 2002; 416: 94–99.

    Article  Google Scholar 

  63. Weninger W, Crowley MA, Manjunath N, von Andrian UH . Migratory properties of naive, effector, and memory CD8(+) T cells. J Exp Med 2001; 194: 953–966.

    Article  CAS  Google Scholar 

  64. Bergwelt-Baildon M, Shimabukuro-Vornhagen A, Popov A, Klein-Gonzalez N, Fiore F, Debey S et al. CD40-activated B cells express full lymph node homing triad and induce T-cell chemotaxis: potential as cellular adjuvants. Blood 2006; 107: 2786–2789.

    Article  Google Scholar 

  65. Rosen SD . Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 2004; 22: 129–156.

    Article  CAS  Google Scholar 

  66. Tang ML, Steeber DA, Zhang XQ, Tedder TF . Intrinsic differences in L-selectin expression levels affect T and B lymphocyte subset-specific recirculation pathways. J Immunol 1998; 160: 5113–5121.

    CAS  PubMed  Google Scholar 

  67. Biagi E, Dotti G, Yvon E, Lee E, Pule M, Vigouroux S et al. Molecular transfer of CD40 and OX40 ligands to leukemic human B cells induces expansion of autologous tumor-reactive cytotoxic T lymphocytes. Blood 2005; 105: 2436–2442.

    Article  CAS  Google Scholar 

  68. Robert C, Klein C, Cheng G, Kogan A, Mulligan RC, von Andrian UH et al. Gene therapy to target dendritic cells from blood to lymph nodes. Gene Therapy 2003; 10: 1479–1486.

    Article  CAS  Google Scholar 

  69. Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W . Current Protocols in Immunology 1991–2008: John Wiley & Sons, Inc.

    Google Scholar 

  70. Hel Z, Nacsa J, Tryniszewska E, Tsai WP, Parks RW, Montefiori DC et al. Containment of simian immunodeficiency virus infection in vaccinated macaques: correlation with the magnitude of virus-specific pre- and postchallenge CD4+ and CD8+ T cell responses. J Immunol 2002; 169: 4778–4787.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant AI063967 and by internal funds from Department of Pathology at UAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Hel.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S., Xu, J., Denning, W. et al. Induction of protective cytotoxic T-cell responses by a B-cell-based cellular vaccine requires stable expression of antigen. Gene Ther 16, 1300–1313 (2009). https://doi.org/10.1038/gt.2009.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.93

Keywords

This article is cited by

Search

Quick links