Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Progress and prospects: Biological properties and technological advances of herpes simplex virus type 1-based amplicon vectors

Abstract

The last two years have seen significant advances in our understanding of the cellular innate responses elicited or activated by the entry of amplicon particles, which may, in part, explain the transient nature of transgene expression often observed in cells infected with helper-free amplicon stocks. At the technological level, the most consistent progress has been in strategies to enhance the stability of transgene cassettes, either through integration into host chromosomes or through the conversion of the amplicon genome into a replication-competent extrachromosomal element.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Cuchet D, Potel C, Thomas J, Epstein AL . HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin Biol Ther 2007; 7: 975–995.

    Article  CAS  Google Scholar 

  2. Suzuki M, Chiocca EA, Saeki Y . Early STAT1 activation after systemic delivery of HSV amplicon vectors suppresses transcription of the vector-encoded transgene. Mol Ther 2007; 15: 2017–2026.

    Article  CAS  Google Scholar 

  3. Suzuki M, Chiocca EA, Saeki Y . Stable transgene expression from HSV amplicon vectors in the brain: potential involvement of immunoregulatory signals. Mol Ther 2008; 16: 1727–1736.

    Article  CAS  Google Scholar 

  4. Tsitoura E, Epstein AL Personal communication. Preliminary results were presented at the 31th International Herpesvirus Workshop, Seattle, WA, USA (2006) and at the 14th Meeting of the European Society of Gene Therapy, Athens, Greece (2006).

  5. Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A et al. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 2006; 80: 7995–8005.

    Article  CAS  Google Scholar 

  6. Suzuki M, Kasai K, Saeki Y . Plasmid DNA sequences present in conventional herpes simplex virus amplicon vectors cause rapid transgene silencing by forming inactive chromatin. J Virol 2006; 80: 3293–3300.

    Article  CAS  Google Scholar 

  7. Burris CA, de Silva S, Narrow WC, Casey AE, Lotta Jr LT, Federoff HJ et al. Hexamethylene bisacetamide leads to reduced helper virus-free HSV-1 amplicon expression titers via suppression of ICP0. J Gene Med 2008; 10: 152–164.

    Article  CAS  Google Scholar 

  8. Rasmussen M, Kong L, Zhang GR, Liu M, Wang X, Szabo G et al. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter. Brain Res 2007; 1144: 19–32.

    Article  CAS  Google Scholar 

  9. Jeong KH, Bakowska JC, Song IO, Fu N, Breakefield XO, Kaiser UB . Improvement in reproductive parameters in hypogonadal female mice by regulated gene replacement therapy in the central nervous system. Gene Therapy 2007; 14: 1092–1101.

    Article  CAS  Google Scholar 

  10. Gomez-Sebastian S, Gimenez-Cassina A, Diaz-Nido J, Lim F, Wade-Martins R . Infectious delivery and expression of a 135 kb human FRDA genomic DNA locus complements Friedreich′s ataxia deficiency in human cells. Mol Ther 2007; 15: 248–254.

    Article  CAS  Google Scholar 

  11. Ho IA, Hui KM, Lam PY . Targeting proliferating tumor cells via the transcriptional control of therapeutic genes. Cancer Gene Ther 2006; 13: 44–52.

    Article  CAS  Google Scholar 

  12. Lam PY, Sia KC, Khong JH, De Geest B, Lim KS, Ho IA et al. An efficient and safe herpes simplex virus type 1 amplicon vector for transcriptionally targeted therapy of human hepatocellular carcinomas. Mol Ther 2007; 15: 1129–1136.

    Article  CAS  Google Scholar 

  13. Wang GY, Ho IA, Sia KC, Miao L, Hui KM, Lam PY . Engineering an improved cell cycle-regulatable herpes simplex virus type 1 amplicon vector with enhanced transgene expression in proliferating cells yet attenuated activities in resting cells. Hum Gene Ther 2007; 18: 222–231.

    Article  CAS  Google Scholar 

  14. Glauser DL, Ackermann M, Saydam O, Fraefel C . Chimeric herpes simplex virus/adeno-associated virus amplicon vectors. Curr Gene Ther 2006; 6: 315–324.

    Article  CAS  Google Scholar 

  15. Liu Q, Perez CF, Wang Y . Efficient site-specific integration of large transgenes by an enhanced herpes simplex virus/adeno-associated virus hybrid amplicon vector. J Virol 2006; 80: 1672–1679.

    Article  CAS  Google Scholar 

  16. Oehmig A, Cortés ML, Perry KF, Sena-Esteves M, Fraefel C, Breakefield XO . Integration of active human beta-galactosidase gene (100 kb) into genome using HSV/AAV amplicon vector. Gene Therapy 2007; 14: 1078–1091.

    Article  CAS  Google Scholar 

  17. Cortes ML, Oehmig A, Perry KF, Sanford JD, Breakefield XO . Expression of human ATM cDNA in Atm-deficient mouse brain mediated by HSV-1 amplicon vector. Neuroscience 2006; 141: 1247–1256.

    Article  CAS  Google Scholar 

  18. Cortés ML, Oehmig A, Saydam O, Sanford JD, Perry KF, Fraeferl C et al. Targeted integration of functional human ATM cDNA into genome mediated by HSV/AAV hybrid amplicon vector. Mol Ther 2008; 16: 81–88.

    Article  Google Scholar 

  19. Bowers WJ, Mastrangelo MA, Howard DF, Southerland HA, Maguire-Zeiss KA, Federoff HJ . Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector. Mol Ther 2006; 13: 580–588.

    Article  CAS  Google Scholar 

  20. Peterson EB, Mastrangelo MA, Federoff HJ, Bowers WJ . Neuronal specificity of HSV/sleeping beauty amplicon transduction in utero is driven primarily by tropism and cell type composition. Mol Ther 2007; 15: 1848–1855.

    Article  CAS  Google Scholar 

  21. Lufino MM, Edser PA, Wade-Martins R . Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 2008; 16: 1525–1538.

    Article  CAS  Google Scholar 

  22. Lufino MM, Manservigi R, Wade-Martins R . An S/MAR-based infectious episomal genomic DNA expression vector provides long-term regulated functional complementation of LDLR deficiency. Nucleic Acids Res 2007; 35: e98.

    Article  Google Scholar 

  23. Moralli D, Simpson KM, Wade-Martins R, Monaco ZL . A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors. EMBO Rep 2006; 7: 911–918.

    Article  CAS  Google Scholar 

  24. Riethmacher D, Lim F, Schimmang T . Efficient transfer of HSV-1 amplicon vectors into embryonic stem cells and their derivatives. Methods Mol Biol 2006; 329: 265–272.

    PubMed  Google Scholar 

  25. Ho IA, Chan KY, Miao L, Shim WS, Guo CM, Cheang P et al. HSV-1 amplicon viral vector-mediated gene transfer to human bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2008; 15: 553–562.

    Article  CAS  Google Scholar 

  26. Tyler CM, Wuertzer CA, Bowers WJ, Federoff HJ . HSV amplicons: neuro applications. Curr Gene Ther 2006; 6: 337–350.

    Article  CAS  Google Scholar 

  27. Shah K, Breakefield XO . HSV amplicon vectors for cancer therapy. Curr Gene Ther 2006; 6: 361–370.

    Article  CAS  Google Scholar 

  28. Jerusalinsky D, Epstein AL . Amplicon vectors as outstanding tools to study and modify cognitive functions. Curr Gene Ther 2006; 6: 351–360.

    Article  CAS  Google Scholar 

  29. Tsitoura E, Georgopoulou U, Mavromara P . HSV-1 based amplicon vectors as an alternative system for the expression of functional HCV proteins. Curr Gene Ther 2006; 6: 393–398.

    Article  CAS  Google Scholar 

  30. Santos K, Duke CMP, Dewhurst S . Amplicon vectors as Vaccine vectors. Curr Gene Ther 2006; 6: 383–392.

    Article  CAS  Google Scholar 

  31. Winkeler A, Sena-Esteves M, Paulis LE, Li H, Waerzeggers Y, Rückriem B et al. Switching on the lights for gene therapy. PLoS ONE 2007; 2: e528.

    Article  Google Scholar 

  32. Kummer C, Winkeler A, Dittmar C, Bauer B, Rueger MA, Rueckriem B et al. Multitracer positron emission tomographic imaging of exogenous gene expression mediated by a universal herpes simplex virus 1 amplicon vector. Mol Imaging 2007; 6: 181–192.

    Article  CAS  Google Scholar 

  33. Pike L, Petravicz J, Wang S . Bioluminescence imaging after HSV amplicon vector delivery into brain. J Gene Med 2006; 8: 804–813.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A L Epstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, A. Progress and prospects: Biological properties and technological advances of herpes simplex virus type 1-based amplicon vectors. Gene Ther 16, 709–715 (2009). https://doi.org/10.1038/gt.2009.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.42

Keywords

This article is cited by

Search

Quick links