Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery

Abstract

Current ultrasound (US)-mediated gene delivery methods are inefficient due, in part, to a lack of US optimization. We systematically explored the use of microbubbles (MBs), US parameters and plasmid delivery routes to improve gene transfer into the mouse liver. Co-presentation of plasmid DNA (pDNA), 10% Optison MBs and pulsed 1-MHz US at a peak negative pressure of 4.3 MPa significantly increased luciferase gene expression with pDNA delivered by intrahepatic injection to the left liver lobe. Intraportal injection delivered pDNA and MBs to the whole liver; with insonation, all lobes expressed the transgene, thus increasing total gene expression. Gene expression was also dependent on acoustic pressure over the range of 0–4.3 MPa, with a peak effect at 3 MPa. An average of 85-fold enhancement in gene delivery was achieved. No enhancement was observed below 0.25 MPa. Increasing pulse length while decreasing pulse repetition frequency and exposure time to maintain a constant total energy during exposure did not further improve transfection efficiency, nor did extend the US exposure pre- or postinjection of pDNA. The results indicate that coupled with MBs, US can more efficiently and dose-dependently enhance gene expression from pDNA delivered via portal vein injection by an acoustic mechanism of inertial cavitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bekeredjian R, Katus HA, Kuecherer HF . Therapeutic use of ultrasound targeted microbubble destruction: a review of non-cardiac applications. Ultraschall Med 2006; 27: 134–140.

    Article  CAS  Google Scholar 

  2. Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P et al. Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Ther 2005; 16: 893–905.

    Article  CAS  Google Scholar 

  3. Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S . Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation 1998; 98: 290–293.

    Article  CAS  Google Scholar 

  4. Song J, Qi M, Kaul S, Price RJ . Stimulation of arteriogenesis in skeletal muscle by microbubble destruction with ultrasound. Circulation 2002; 106: 1550–1555.

    Article  Google Scholar 

  5. Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG . Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci USA 1987; 84: 8463–8467.

    Article  CAS  Google Scholar 

  6. Bao S, Thrall BD, Miller DL . Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997; 23: 953–959.

    Article  CAS  Google Scholar 

  7. Greenleaf WJ, Bolander ME, Sarkar G, Goldring MB, Greenleaf JF . Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol 1998; 24: 587–595.

    Article  CAS  Google Scholar 

  8. Ward M, Wu J, Chiu JF . Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents. J Acoust Soc Am 1999; 105: 2951–2957.

    Article  CAS  Google Scholar 

  9. Ward M, Wu J, Chiu JF . Experimental study of the effects of Optison concentration on sonoporation in vitro. Ultrasound Med Biol 2000; 26: 1169–1175.

    Article  CAS  Google Scholar 

  10. Chen WS, Lu X, Liu Y, Zhong P . The effect of surface agitation on ultrasound-mediated gene transfer in vitro. J Acoust Soc Am 2004; 116: 2440–2450.

    Article  CAS  Google Scholar 

  11. Lawrie A, Brisken AF, Francis SE, Wyllie D, Kiss-Toth E, Qwarnstrom EE et al. Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound Med Biol 2003; 29: 1453–1461.

    Article  Google Scholar 

  12. Rosenthal I, Sostaric JZ, Riesz P . Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem 2004; 11: 349–363.

    CAS  PubMed  Google Scholar 

  13. Mitragotri S . Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 2005; 4: 255–260.

    Article  CAS  Google Scholar 

  14. Klibanov AL . Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 2006; 41: 354–362.

    Article  Google Scholar 

  15. Frenkel V, Li KC . Potential role of pulsed-high intensity focused ultrasound in gene therapy. Future Oncol 2006; 2: 111–119.

    Article  CAS  Google Scholar 

  16. Sakakima Y, Hayashi S, Yagi Y, Hayakawa A, Tachibana K, Nakao A . Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther 2005; 12: 884–889.

    Article  CAS  Google Scholar 

  17. Hosseinkhani H, Tabata Y . Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran. J Control Release 2005; 108: 540–556.

    Article  CAS  Google Scholar 

  18. Hauff P, Seemann S, Reszka R, Schultze-Mosgau M, Reinhardt M, Buzasi T et al. Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. Radiology 2005; 236: 572–578.

    Article  Google Scholar 

  19. Dittmar KM, Xie J, Hunter F, Trimble C, Bur M, Frenkel V et al. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: initial experience. Radiology 2005; 235: 541–546.

    Article  Google Scholar 

  20. Bekeredjian R, Grayburn PA, Shohet RV . Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 2005; 45: 329–335.

    Article  CAS  Google Scholar 

  21. Bekeredjian R, Chen S, Grayburn PA, Shohet RV . Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. Ultrasound Med Biol 2005; 31: 687–691.

    Article  Google Scholar 

  22. Inagaki H, Suzuki J, Ogawa M, Taniyama Y, Morishita R, Isobe M . Ultrasound-microbubble-mediated NF-kappaB decoy transfection attenuates neointimal formation after arterial injury in mice. J Vasc Res 2006; 43: 12–18.

    Article  CAS  Google Scholar 

  23. Zen K, Okigaki M, Hosokawa Y, Adachi Y, Nozawa Y, Takamiya M et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol 2006; 40: 799–809.

    Article  CAS  Google Scholar 

  24. Pislaru SV, Pislaru C, Kinnick RR, Singh R, Gulati R, Greenleaf JF et al. Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur Heart J 2003; 24: 1690–1698.

    Article  CAS  Google Scholar 

  25. Lu QL, Liang HD, Partridge T, Blomley MJ . Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Therapy 2003; 10: 396–405.

    Article  CAS  Google Scholar 

  26. Wang L, Calcedo R, Nichols TC, Bellinger DA, Dillow A, Verma IM et al. Sustained correction of disease in naive and AAV2-pretreated hemophilia B dogs: AAV2/8-mediated, liver-directed gene therapy. Blood 2005; 105: 3079–3086.

    Article  CAS  Google Scholar 

  27. Sonoda S, Tachibana K, Uchino E, Okubo A, Yamamoto M, Sakoda K et al. Gene transfer to corneal epithelium and keratocytes mediated by ultrasound with microbubbles. Invest Ophthalmol Vis Sci 2006; 47: 558–564.

    Article  Google Scholar 

  28. Shimamura M, Sato N, Taniyama Y, Kurinami H, Tanaka H, Takami T et al. Gene transfer into adult rat spinal cord using naked plasmid DNA and ultrasound microbubbles. J Gene Med 2005; 7: 1468–1474.

    Article  CAS  Google Scholar 

  29. Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H et al. Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Therapy 2004; 11: 1532–1539.

    Article  CAS  Google Scholar 

  30. Hynynen K, McDannold N, Martin H, Jolesz FA, Vykhodtseva N . The threshold for brain damage in rabbits induced by bursts of ultrasound in the presence of an ultrasound contrast agent (Optison). Ultrasound Med Biol 2003; 29: 473–481.

    Article  Google Scholar 

  31. Manome Y, Nakayama N, Nakayama K, Furuhata H . Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol 2005; 31: 693–702.

    Article  Google Scholar 

  32. Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D et al. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 2005; 166: 761–771.

    Article  CAS  Google Scholar 

  33. Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA et al. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci USA 2006; 103: 8469–8474.

    Article  CAS  Google Scholar 

  34. Ohta S, Suzuki K, Tachibana K, Yamada G . Microbubble-enhanced sonoporation: efficient gene transduction technique for chick embryos. Genesis 2003; 37: 91–101.

    Article  CAS  Google Scholar 

  35. Nishida K, Doita M, Takada T, Kakutani K, Miyamoto H, Shimomura T et al. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine 2006; 31: 1415–1419.

    Article  Google Scholar 

  36. Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A . Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 2003; 14: 591–597.

    Article  CAS  Google Scholar 

  37. Wu J, Nyorg WE . Emerging Therapeutic Ultrasound. World Scientific Publishing: Hackensack, NJ, 2006.

    Book  Google Scholar 

  38. Hwang J . Ultrasound-Mediated Vascular Bioeffects: Applications for Hemostasis and Sclerotherapy, PhD thesis, University of Washington: Seattle, WA, 2005.

    Google Scholar 

  39. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  40. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  Google Scholar 

  41. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  Google Scholar 

  42. Miao CH, Thompson AR, Loeb K, Ye X . Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther 2001; 3: 947–957.

    Article  CAS  Google Scholar 

  43. Ye X, Loeb KR, Stafford DW, Thompson AR, Miao CH . Complete and sustained phenotypic correction of hemophilia B in mice following hepatic gene transfer of a high-expressing human factor IX plasmid. J Thromb Haemost 2003; 1: 103–111.

    Article  CAS  Google Scholar 

  44. Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S . Microbubble destruction by ultrasound results in capillary rupture: adverse bioeffects or a possible mechanism for in vivo drug delivery? J Am Soc Echocardiogr 1998; 11: 497.

    Google Scholar 

  45. Caskey CF, Stieger SM, Qin S, Dayton PA, Ferrara KW . Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J Acoust Soc Am 2007; 122: 1191–1200.

    Article  CAS  Google Scholar 

  46. Chen WS, Brayman AA, Matula TJ, Crum LA . Inertial cavitation dose and hemolysis produced in vitro with or without Optison. Ultrasound Med Biol 2003; 29: 725–737.

    Article  Google Scholar 

  47. Chen WS, Brayman AA, Matula TJ, Crum LA, Miller MW . The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound Med Biol 2003; 29: 739–748.

    Article  Google Scholar 

  48. Holland CK, Apfel RE . Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J Acoust Soc Am 1990; 88: 2059–2069.

    Article  CAS  Google Scholar 

  49. Duvshani-Eshet M, Baruch L, Kesselman E, Shimoni E, Machluf M . Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Therapy 2006; 13: 163–172.

    Article  CAS  Google Scholar 

  50. Duvshani-Eshet M, Machluf M . Efficient transfection of tumors facilitated by long-term therapeutic ultrasound in combination with contrast agent: from in vitro to in vivo setting. Cancer Gene Ther 2007; 14: 306–315.

    Article  CAS  Google Scholar 

  51. Ye P, Thompson AR, Sarkar R, Shen Z, Lillicrap DP, Kaufman RJ et al. Naked DNA transfer of Factor VIII induced transgene-specific, species-independent immune response in hemophilia A mice. Mol Ther 2004; 10: 117–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of Dr Peter J Kaczkowski for many helpful technical discussions, Dr Steven G Kargl for conducting the numerical acoustic field simulation studies and Dr Francesco Curra for his assistance in modeling the thermal impact of the ultrasound treatments described here. This work was supported by a Career Development Grant from National Hemophilia Foundation (CHM) and R01 grants from National Institutes of Health (R01 HL69049 and R01 HL-82600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C H Miao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Z., Brayman, A., Chen, L. et al. Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther 15, 1147–1155 (2008). https://doi.org/10.1038/gt.2008.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.51

Keywords

This article is cited by

Search

Quick links