Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interleukin-6 small interfering RNA improved the herpes simplex virus-induced systemic inflammation in vivo Behcet’s disease-like mouse model

Abstract

It is known that the level of interleukin-6 (IL-6) is higher in patients with active Behcet’s disease (BD) than in those with inactive disease. Herpes simplex virus (HSV) type 1 inoculation of the earlobes of ICR mice resulted in the development of BD-like symptoms. To find out whether downregulation of IL-6 would affect the symptoms of BD, IL-6 small interfering RNA (siRNA) was administered to a BD mouse model. IL-6 siRNA was intraperitoneally injected into BD mice to downregulate IL-6 (n=9). IL-6 siRNA injection downregulated serum IL-6 level (118.9±114.4 pg ml−1) compared with scramble injection (439.4±378.0 pg ml−1) in BD mice (P=0.01). In seven out of nine IL-6 siRNA-injected BD mice, 77.8% improved and the severity score was decreased from 3.1±1.05 to 1.7±0.87 (P=0.005), whereas two out of six (33.3%) scramble-injected BD mice improved and the severity score changed from 2.5±0.84 to 2.0±1.41 (P=0.203). Foxp3, RORγt, IL-17A, IL-17F and tumor necrosis factor-α were also influenced in IL-6 siRNA-injected BD mice compared with scramble-injected BD mice. Adoptive transfer of CD4+CD25+ cells to BD mice affected the decrease of IL-6 serum levels and were dependent on CD4+CD25+ cell numbers. These results showed that downregulation of IL-6 improved the inflammatory symptoms in BD mice through upregulation of regulatory T cells and inhibition of Th17 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Akdeniz N, Esrefoglu M, Kele° MS, Karakuzu A, Atasoy M . Serum interleukin-2, interleukin-6, tumour necrosis factor-alpha and nitric oxide levels in patients with Behcet's disease. Ann Acad Med Singapore 2004; 33: 596–599.

    CAS  PubMed  Google Scholar 

  2. Kallen KJ . The role of trans signalling via the agonistic soluble IL-6 receptor in human diseases. Biochim Biophys Acta 2002; 1592: 323–343.

    Article  CAS  Google Scholar 

  3. Heinrich PC, Castell JV, Andus T . Interleukin-6 and the acute phase response. Biochem 1990; 265: 621–636.

    Article  CAS  Google Scholar 

  4. Hirano T . Interleukin-6 and its relation to inflammation and disease. Clin Immunol Immunopathol 1992; 62: 60–65.

    Article  Google Scholar 

  5. Yamakawa Y, Sugita Y, Nagatani T, Takahashi S, Yamakawa T, Tanaka S et al. Interleukin-6 in patients with Behcet's disease. J Dermatol Sci 1996; 11: 189–195.

    Article  CAS  Google Scholar 

  6. LinksWang CR, Chuang CY, Chen CY . Anticardiolipin antibodies and interleukin-6 in cerebrospinal fluid and blood of Chinese patients with neuro-Behçet's syndrome. Clin Exp Rheumatol 1992; 10: 599–602.

    Google Scholar 

  7. Bardak Y, Arido∂an BC . The demonstration of serum interleukin 6-8, tumor necrosis factor-alpha, complement, and immunoglobulin levels in Behçet's disease with ocular involvement. Ocul Immunol Inflamm 2004; 12: 53–58.

    Article  CAS  Google Scholar 

  8. Zouboulis CC, Katsantonis J, Ketteler R, Treudler R, Kaklamani E, Hornemann S et al. Adamantiades-Behçet's disease: interleukin-8 is increased in serum of patients with active oral and neurological manifestations and is secreted by small vessel endothelial cells. Arch Dermatol Res 2000; 292: 279–284.

    Article  CAS  Google Scholar 

  9. Choi B, Hwang Y, Kwon HJ, Lee ES, Park KS, Bang D et al. Tumor necrosis factor alpha small interfering RNA decreases herpes simplex virus-induced inflammation in a mouse model. J Dermatol Sci 2008; in press.

  10. Seçkin D, Akpolat T, Oltulu Y, Erkan D, Cantürk T, Adam B et al. Serum lipoprotein (a) levels in Behçet's disease. Br J Dermatol 1995; 133: 342.

    Article  Google Scholar 

  11. Müftüo∂lu AU, Yazici H, Yurdakul S, Tüzün Y, Pazarli H, Güngen G et al. Relation of serum Creactive protein and erythrocyte sedimentation rates to disease activity. Int J Dermatol 1986; 25: 235–239.

    Article  Google Scholar 

  12. al-Dalaan A, al-Sedairy S, al-Balaa S, al-Janadi M, Elramahi K, Bahabri S . Enhanced interleukin 8 secretion in circulation in patients with Behçet's disease. J Rheumatol 1995; 22: 904–907.

    CAS  PubMed  Google Scholar 

  13. Katsantonis J, Adler Y, Orfanos CE, Zouboulis CC . Adamantiades–Behçet's disease: serum IL-8 is more reliable marker for disease activity than C-reactive protein and erythrocyte sedimentation rate. Dermatology 2000; 201: 37–39.

    Article  CAS  Google Scholar 

  14. Sayinalp N, Ozcebe OI, Ozdemir O, Haznedaro∂lu IC, Dündar S, Kirazli S . Cytokines in Behçet's disease. J Rheumatol 1996; 23: 321–322.

    CAS  PubMed  Google Scholar 

  15. Sohn S, Lee ES, Bang D, Lee S . Behçet's disease-like symptoms induced by the Herpes simplex virus in ICR mice. Eur J Dermatol 1998; 8: 21–23.

    CAS  PubMed  Google Scholar 

  16. Adam B, Calikoglu E . Serum interleukin-6, procalcitonin and C-reactive protein levels in subjects with active Behçet's disease. J Eur Acad Dermatol Venereol 2004; 18: 318–320.

    Article  CAS  Google Scholar 

  17. Evereklioglu C, Er H, Türköz Y, Cekmen M . Serum levels of TNF-α, sIL-2R, IL-6, and IL-8 are increased and associated with elevated lipid peroxidation in patients with Behçet's disease. Mediators Inflamm 2002; 11: 87–93.

    Article  CAS  Google Scholar 

  18. Hirohata S, Isshi K, Oguchi H, Ohse T, Haraoka H, Takeuchi A et al. Cerebrospinal fluid interleukin-6 in progressive Neuro-Behçet's syndrome. Clin Immunol Immunopathol 1997; 82: 12–17.

    Article  CAS  Google Scholar 

  19. Kimura A, Naka T, Kishimoto T . IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA 2007; 104: 12099–12104.

    Article  CAS  Google Scholar 

  20. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF . TGF-beta induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172: 5149–5153.

    Article  CAS  Google Scholar 

  21. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  Google Scholar 

  22. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007; 8: 1390–1397.

    Article  CAS  Google Scholar 

  23. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201: 233–240.

    Article  CAS  Google Scholar 

  24. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ . IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202: 96–105.

    Article  CAS  Google Scholar 

  25. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13: 715–725.

    Article  CAS  Google Scholar 

  26. Nishimoto N, Kishimoto T . Humanized antihuman IL-6 receptor antibody, tocilizumab. Handb Exp Pharmacol 2008; 181: 151–160.

    Article  CAS  Google Scholar 

  27. Mudter J, Neurath MF . Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis 2007; 13: 1016–1023.

    Article  Google Scholar 

  28. Chun HY, Chung JW, Kim HA, Yun JM, Jeon JY, Ye YM et al. Cytokine IL-6 and IL-10 as Biomarkers in Systemic Lupus Erythematosus. J Clin Immunol 2007; 27: 461–466.

    Article  CAS  Google Scholar 

  29. Paludan SR . Requirements for the induction of interleukin-6 by herpes simplex virus-infected leukocytes. J Virol 2001; 75: 8008–8015.

    Article  CAS  Google Scholar 

  30. Kanangat S, Babu JS, Knipe DM, Rouse BT . HSV-1-mediated modulation of cytokine gene expression in a permissive cell line: selective upregulation of IL-6 gene expression. Virology 1996; 219: 295–300.

    Article  CAS  Google Scholar 

  31. Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 1994; 368: 339–342.

    Article  CAS  Google Scholar 

  32. LeBlanc RA, Pesnicak L, Cabral ES, Godleski M, Straus SE . Lack of interleukin-6 (IL-6) enhances susceptibility to infection but does not alter latency or reactivation of herpes simplex virus type 1 in IL-6 knockout mice. J Virol 1999; 73: 8145–8151.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126: 1121–1133.

    Article  CAS  Google Scholar 

  34. Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M et al. Foxp3 Inhibits ROR{gamma}t-mediated IL-17A mRNA Transcription through Direct Interaction with ROR{gamma}t. J Biol Chem 2008; 283: 17003–17008.

    Article  CAS  Google Scholar 

  35. Henness S, Johnson CK, Ge Q, Armour CL, Hughes JM, Ammit AJ . IL-17A augments TNF-alpha-induced IL-6 expression in airway smooth muscle by enhancing mRNA stability. J Allergy Clin Immunol 2004; 114: 958–964.

    Article  CAS  Google Scholar 

  36. Wan S, Xia C, Morel L . IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions. J Immunol 2007; 178: 271–279.

    Article  CAS  Google Scholar 

  37. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10: 1969–1980.

    Article  CAS  Google Scholar 

  38. McKee AS, Pearce EJ . CD25+CD4+ cells contribute to Th2 polarization during helminth infection by suppressing Th1 response development. J Immunol 2004; 173: 1224–1231.

    Article  CAS  Google Scholar 

  39. van Mierlo GJ, Scherer HU, Hameetman M, Morgan ME, Flierman R, Huizinga TW et al. TNFR-shedding by CD4+CD25+ regulatory T cells inhibits the induction of inflammatory mediators. J Immunol 2008; 180: 2747–2751.

    Article  CAS  Google Scholar 

  40. Noguchi D, Wakita D, Tajima M, Ashino S, Iwakura Y, Zhang Y et al. Blocking of IL-6 signaling pathway prevents CD4+ T cell-mediated colitis in a T(h)17-independent manner. Int Immunol 2007; 19: 1431–1440.

    Article  CAS  Google Scholar 

  41. McGeachy MJ, Stephens LA, Anderton SM . Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 2005; 175: 3025–3032.

    Article  CAS  Google Scholar 

  42. Baecher-Allan C, Hafler DA . Suppressor T cells in human diseases. J Exp Med 2004; 200: 273–276.

    Article  CAS  Google Scholar 

  43. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA . Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004; 199: 971–979.

    Article  CAS  Google Scholar 

  44. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 2002; 109: 131–140.

    Article  CAS  Google Scholar 

  45. Sakaguchi S . Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–562.

    Article  CAS  Google Scholar 

  46. Veldhoen M, Hocking RJ, Atkins CL, Locksley RM, Stockinger B . TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24: 179–189.

    Article  CAS  Google Scholar 

  47. Yokota S, Miyamae T, Imagawa T, Iwata N, Katakura S, Mori M et al. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 2005; 52: 818–825.

    Article  CAS  Google Scholar 

  48. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421: 744–748.

    Article  CAS  Google Scholar 

  49. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201: 233–240.

    Article  CAS  Google Scholar 

  50. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116: 1310–1316.

    Article  CAS  Google Scholar 

  51. Lew W, Chang JY, Jung JY, Bang D . Increased expression of interleukin-23 p19 mRNA in erythema nodosum-like lesions of Behçet's disease. Br J Dermatol 2008; 158: 505–511.

    Article  CAS  Google Scholar 

  52. Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, Kakehi T . Mechanisms and pathological significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman's disease. Blood 2008; 112: 3959–3964.

    Article  CAS  Google Scholar 

  53. Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A et al. IL-6 Receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-TNF biologics: results from a 24-week multicentre Randomised Placebo Controlled Trial. Ann Rheum Dis 2008; 67: 1516–1523.

    Article  CAS  Google Scholar 

  54. Hirohata S, Suda H, Hashimoto T . Low-dose weekly methotrexate for progressive neuropsychiatric manifestations in Behcet’s disease. J Neurol Sci 1998; 159: 181–185.

    Article  CAS  Google Scholar 

  55. Hattori Y, Maitani Y . DNA/Lipid complex incorporated with fibronectin to cell adhesion enhances transfection efficiency in prostate cancer cells and xenografts. Biol Pharm Bul 2007; 30: 603–607.

    Article  CAS  Google Scholar 

  56. Pawar RM, Dhinakar Raj G, Senthil Kumar TMA, Raja A, Balachandran C . Effect of siRNA mediated suppression of signaling lymphocyte activation molecule on replication of peste des petits ruminants virus in vitro. Virus Res 2008; 136: 118–123.

    Article  CAS  Google Scholar 

  57. Hsu HC, Yang PA, Wang J, Wu Q, Myers R, Chen J et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 2008; 9: 124–126.

    Article  Google Scholar 

  58. Yamaguchi Y, Fujio K, Shoda H, Okamoto A, Tsuno NH, Takahashi K et al. IL-17B and IL-17C Are Associated with TNF-alpha Production and Contribute to the Exacerbation of Inflammatory Arthritis. J Immunol 2007; 179: 7128–7136.

    Article  CAS  Google Scholar 

  59. Liu Z, Jiu J, Liu S, Fa X, Li F, Du Y . Blockage of tumor necrosis factor prevents intestinal mucosal inflammation through down-regulation of interleukin-23 secretion. J Autoimmun 2007; 29: 187–194.

    Article  CAS  Google Scholar 

  60. Kamiya S, Nakamura C, Fukawa T, Ono K, Ohwaki T, Yoshimoto T et al. Effects of IL-23 and IL-27 on osteoblasts and osteoclasts: inhibitory effects on osteoclast differentiation. J Bone Miner Metab 2007; 25: 277–285.

    Article  CAS  Google Scholar 

  61. Nishihara M, Ogura H, Ueda N, Tsuruoka M, Kitabayashi C, Tsuji F et al. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int Immunol 2007; 19: 695–702.

    Article  CAS  Google Scholar 

  62. Sonobe Y, Liang J, Jin S, Zhang G, Takeuchi H, Mizuno T, Suzumura A . Microglia express a functional receptor for interleukin-23. Biochem Biophys Res Commun 2008; 370: 129–133.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2008-531-E00024), 2004 GRRC Grant, and by a 2007 grant from the ‘Department of Medical Sciences, The Graduate School, Ajou University.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, J., Byun, H., Lee, Y. et al. Interleukin-6 small interfering RNA improved the herpes simplex virus-induced systemic inflammation in vivo Behcet’s disease-like mouse model. Gene Ther 16, 415–425 (2009). https://doi.org/10.1038/gt.2008.180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.180

Keywords

This article is cited by

Search

Quick links