Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Individual and epistatic effects of genetic polymorphisms of B-cell co-stimulatory molecules on susceptibility to pemphigus foliaceus

Abstract

Following the candidate gene approach we analyzed the CD40L, CD40, BLYS and CD19 genes that participate of B-cell co-stimulation, for association with pemphigus foliaceus (PF), an organ-specific autoimmune disease, characterized by the detachment of epidermal cells from each other (acantholysis) and presence of autoantibodies specific for desmoglein 1 (dsg1), an epidermal cell-adhesion molecule. The disease is endemic in certain regions of Brazil and also is known as fogo selvagem. Complex interactions among environmental and genetic susceptibility factors contribute to the manifestation of this multifactorial disease. The sample included 179 patients and 317 controls. Strong significant association was found with CD40L−726T>C (odds ratio, OR=5.54 and 0.30 for T+ and C+ genotypes, respectively). In addition, there were significant negative associations with CD40 −1T (OR=0.61) and BLYS−871T (OR=0.62) due to the decrease of the frequency of both homo- and heterozygotes in the patient group. No associations were found with variants of CD19 gene. Gene–gene interactions were observed between CD40 and BLYS, and between CD40L and BLYS. So, the dominant protective effects of CD40L−726C and of CD40 −1T only manifest in BLYS−871T+ individuals, and vice versa. We conclude that genetic variability of CD40L, CD40 and BLYS is an important factor for PF pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baker KP . BLyS—an essential survival factor for B cells: basic biology, links to pathology and therapeutic target. Autoimmun Rev 2004; 3: 368–375.

    Article  CAS  Google Scholar 

  2. Goodnow CC . Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci USA 1996; 93: 2264–2271.

    Article  CAS  Google Scholar 

  3. Denfeld RW, Hollenbaugh D, Fehrenbach A, Weiss JM, von Leoprechting A, Mai B et al. CD40 is functionally expressed on human keratinocytes. Eur J Immunol 1996; 26: 2329–2334.

    Article  CAS  Google Scholar 

  4. Vogel LA, Noelle RJ . CD40 and its crucial role as a member of the TNFR family. Semin Immunol 1998; 10: 435–442.

    Article  CAS  Google Scholar 

  5. Howard LM, Miller SD . Immunotherapy targeting the CD40/CD154 costimulatory pathway for treatment of autoimmune disease. Autoimmunity 2004; 37: 411–418.

    Article  CAS  Google Scholar 

  6. Aoki-Ota M, Kinoshita M, Ota T, Tsunoda K, Iwasaki T, Tanaka S et al. Tolerance induction by the blockade of CD40/CD154 interaction in pemphigus vulgaris mouse model. J Invest Dermatol 2006; 126: 105–113.

    Article  CAS  Google Scholar 

  7. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999; 285: 260–263.

    Article  CAS  Google Scholar 

  8. Schneider P, Mackay F, Steiner V, Hofmann K, Bodmer JL, Holler N et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999; 189: 1747–1756.

    Article  CAS  Google Scholar 

  9. Shu HB, Hu WH, Johnson H . TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J Leukoc Biol 1999; 65: 680–683.

    Article  CAS  Google Scholar 

  10. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000; 404: 995–999.

    Article  CAS  Google Scholar 

  11. Cheema GS, Roschke V, Hilbert DM, Stohl W . Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 2001; 44: 1313–1319.

    Article  CAS  Google Scholar 

  12. Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren's syndrome. J Clin Invest 2002; 109: 59–68.

    Article  CAS  Google Scholar 

  13. Zhang J, Roschke V, Baker KP, Wang Z, Alarcón GS, Fessler BJ et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 2001; 166: 6–10.

    Article  CAS  Google Scholar 

  14. Engel P, Zhou LJ, Ord DC, Sato S, Koller B, Tedder TF . Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 1995; 3: 39–50.

    Article  CAS  Google Scholar 

  15. Rickert RC, Rajewsky K, Roes J . Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 1995; 376: 352–355.

    Article  CAS  Google Scholar 

  16. Sato S, Ono N, Steeber DA, Pisetsky DS, Tedder TF . CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J Immunol 1996; 157: 4371–4378.

    CAS  PubMed  Google Scholar 

  17. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K . Quantitative genetic variation in CD19 expression correlates with autoimmunity. J. Immunol 2000; 165: 6635–6643.

    Article  CAS  Google Scholar 

  18. Fujimoto M, Poe JC, Inaoki M, Tedder TF . CD19 regulates B lymphocyte responses to transmembrane signals. Semin Immunol 1998; 10: 267–277.

    Article  CAS  Google Scholar 

  19. Li N, Aoki V, Hans-Filho G, Rivitti EA, Diaz LA . The role of intramolecular epitope spreading in the pathogenesis of endemic pemphigus foliaceus (fogo selvagem). J Exp Med 2003; 197: 1501–1510.

    Article  CAS  Google Scholar 

  20. Warren SJ, Lin MS, Giudice GJ, Hoffmann RG, Hans-Filho G, Aoki V et al. The prevalence of antibodies against desmoglein 1 in endemic pemphigus foliaceus in Brazil. Cooperative Group on Fogo Selvagem Research. N Engl J Med 2000; 343: 23–30.

    Article  CAS  Google Scholar 

  21. Diaz LA, Sampaio SA, Rivitti EA, Martins CR, Cunha PR, Lombardi C et al. Endemic pemphigus foliaceus (Fogo Selvagem): II. Current and historic epidemiologic studies. J Invest Dermatol 1989; 92: 4–12.

    Article  CAS  Google Scholar 

  22. Petzl-Erler ML, Santamaria J . Are HLA class II genes controlling susceptibility and resistance to Brazilian pemphigus foliaceus (fogo selvagem)? Tissue Antigens 1989; 33: 408–414.

    Article  CAS  Google Scholar 

  23. Moraes ME, Fernandez-Vina M, Lazaro A, Diaz LA, Filho GH, Friedman H et al. An epitope in the third hypervariable region of the DRB1 gene is involved in the susceptibility to endemic pemphigus foliaceus (fogo selvagem) in three different Brazilian populations. Tissue Antigens 1997; 49: 35–40.

    Article  CAS  Google Scholar 

  24. Pavoni DP, Roxo VM, Marquart FA, Petzl-Erler ML . Dissecting the associations of endemic pemphigus foliaceus (Fogo Selvagem) with HLA-DRB1 alleles and genotypes. Genes Immun 2003; 4: 110–116.

    Article  CAS  Google Scholar 

  25. Pereira NF, Hansen JA, Lin MT, Roxo VM, Braun K, Petzl-Erler ML . Cytokine gene polymorphisms in endemic pemphigus foliaceus: a possible role for IL6 variants. Cytokine 2004; 28: 233–241.

    Article  CAS  Google Scholar 

  26. Braun-Prado K, Petzl-Erler ML . Programmed cell death 1 gene (PDCD1) polymorphism and pemphigus foliaceus (fogo selvagem) disease susceptibility. Genet Mol Biol 2007; 30: 314–321.

    Article  CAS  Google Scholar 

  27. Kohler KF, Petzl-Erler ML . No evidence for association of the TP53 12139 and the BAX-248 polymorphisms with endemic pemphigus foliaceus (fogo selvagem). Int J Immunogenet 2006; 33: 141–144.

    Article  CAS  Google Scholar 

  28. Pavoni DP, Cerqueira LB, Roxo VM, Petzl-Erler ML . Polymorphism of the promoter region and exon 1 of the CTLA4 gene in endemic pemphigus foliaceus (fogo selvagem). Braz J Med Biol Res 2006; 39: 1227–1232.

    Article  CAS  Google Scholar 

  29. Petzl-Erler ML, Malheiros D . Pemphigus foliaceus and desmoglein 1 gene polymorphism: is there any relationship? J Autoimmun 2005; 25: 121–125.

    Article  CAS  Google Scholar 

  30. Roxo VM, Pereira NF, Pavoni DP, Lin MT, Hansen JA, de O Poersch C et al. Polymorphisms within the tumor necrosis factor and lymphotoxin-alpha genes and endemic pemphigus foliaceus—are there any associations? Tissue Antigens 2003; 62: 394–400.

    Article  CAS  Google Scholar 

  31. Sabeti P, Usen S, Farhadian S, Jallow M, Doherty T, Newport M et al. CD40L association with protection from severe malaria. Genes Immun 2002; 3: 286–291.

    Article  CAS  Google Scholar 

  32. Chadha S, Miller K, Farwell L, Lightstone LB, Daly MJ, Rioux JD et al. Haplotype structure of TNFRSF5–TNFSF5 (CD40–CD40L) and association analysis in systemic lupus erythematosus. Eur J Hum Genet 2005; 13: 669–676.

    Article  CAS  Google Scholar 

  33. Lobo FM, Xu S, Lee C, Fuleihan RL . Transcriptional activity of the distal CD40 ligand promoter. Biochem Biophys Res Commun 2000; 279: 245–250.

    Article  CAS  Google Scholar 

  34. Citores MJ, Rua-Figueroa I, Rodriguez-Gallego C, Durántez A, García-Laorden MI, Rodríguez-Lozano C et al. The dinucleotide repeat polymorphism in the 3′UTR of the CD154 gene has a functional role on protein expression and is associated with systemic lupus erythematosus. Ann Rheum Dis 2004; 63: 310–317.

    Article  CAS  Google Scholar 

  35. Tomer Y, Concepcion E, Greenberg DA . A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves' disease. Thyroid 2002; 12: 1129–1135.

    Article  CAS  Google Scholar 

  36. Kim TY, Park YJ, Hwang JK, Song JY, Park KS, Cho BY et al. A C/T polymorphism in the 5′-untranslated region of the CD40 gene is associated with Graves' disease in Koreans. Thyroid 2003; 13: 919–925.

    Article  Google Scholar 

  37. Heward JM, Simmonds MJ, Carr-Smith J, Foxall H, Franklyn JA, Gough SC . A single nucleotide polymorphism in the CD40 gene on chromosome 20q (GD-2) provides no evidence for susceptibility to Graves' disease in UK Caucasians. Clin Endocrinol (Oxf) 2004; 61: 269–272.

    Article  CAS  Google Scholar 

  38. Houston FA, Wilson V, Jennings CE, Owen CJ, Donaldson P, Perros P et al. Role of the CD40 locus in Graves' disease. Thyroid 2004; 14: 506–509.

    Article  CAS  Google Scholar 

  39. Kurylowicz A, Kula D, Ploski R, Skorka A, Jurecka-Lubieniecka B, Zebracka J et al. Association of CD40 gene polymorphism (C-1T) with susceptibility and phenotype of Graves' disease. Thyroid 2005; 15: 1119–1124.

    Article  CAS  Google Scholar 

  40. Tomer Y, Davies TF, Greenberg DA . What is the contribution of a Kozak SNP in the CD40 gene to Graves' disease? Clin Endocrinol (Oxf) 2005; 62: 258.

    Article  Google Scholar 

  41. Jacobson EM, Huber AK, Akeno N, Sivak M, Li CW, Concepcion E et al. A CD40 Kozak sequence polymorphism and susceptibility to antibody-mediated autoimmune conditions: the role of CD40 tissue-specific expression. Genes Immun 2007; 8: 205–214.

    Article  CAS  Google Scholar 

  42. Buck D, Kroner A, Rieckmann P, Maurer M, Wiendl H . Analysis of the C/T(-1) single nucleotide polymorphism in the CD40 gene in multiple sclerosis. Tissue Antigens 2006; 68: 335–338.

    Article  CAS  Google Scholar 

  43. Kozak M . Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 1991; 266: 19867–19870.

    CAS  PubMed  Google Scholar 

  44. Jacobson EM, Concepcion E, Oashi T, Tomer Y . A Graves' disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 2005; 146: 2684–2691.

    Article  CAS  Google Scholar 

  45. Fuller BW, Nishimura T, Noelle RJ . The selective triggering of CD40 on keratinocytes in vivo enhances cell-mediated immunity. Eur J Immunol 2002; 32: 895–902.

    Article  CAS  Google Scholar 

  46. Chiossi MP, Costa RS, Roselino AM . Dermal dendritic cell number correlates with serum autoantibody titers in Brazilian pemphigus foliaceus patients. Braz J Med Biol Res 2004; 37: 337–341.

    Article  CAS  Google Scholar 

  47. Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K . Analysis on the association of human BLYS (BAFF, TNFSF13B) polymorphisms with systemic lupus erythematosus and rheumatoid arthritis. Genes Immun 2002; 3: 424–429.

    Article  CAS  Google Scholar 

  48. Novak AJ, Grote DM, Kline MP, Manske MK, Slager S, Ziesmer SC et al. Elevated serum B-lymphocyte stimulator levels in patients with familial lymphoproliferative disorders. J Clin Oncol 2006; 24: 983–987.

    Article  CAS  Google Scholar 

  49. Hromas R, Collins SJ, Hickstein D, Raskind W, Deaven LL, O'Hara P et al. A retinoic acid-responsive human zinc finger gene, MZF-1, preferentially expressed in myeloid cells. J Biol Chem 1991; 266: 14183–14187.

    CAS  PubMed  Google Scholar 

  50. Kuroki K, Tsuchiya N, Tsao BP, Grossman JM, Fukazawa T, Hagiwara K et al. Polymorphisms of human CD19 gene: possible association with susceptibility to systemic lupus erythematosus in Japanese. Genes Immun 2002; 3 (Suppl 1): S21–S30.

    Article  CAS  Google Scholar 

  51. Tsuchiya N, Kuroki K, Fujimoto M, Murakami Y, Tedder TF, Tokunaga K et al. Association of a functional CD19 polymorphism with susceptibility to systemic sclerosis. Arthritis Rheum 2004; 50: 4002–4007.

    Article  CAS  Google Scholar 

  52. D'Alfonso S, Rampi M, Bocchio D, Colombo G, Scorza-Smeraldi R, Momigliano-Richardi P . Systemic lupus erythematosus candidate genes in the Italian population: evidence for a significant association with interleukin-10. Arthritis Rheum 2000; 43: 120–128.

    Article  CAS  Google Scholar 

  53. Caproni M, Antiga E, Torchia D, Volpi W, del Bianco E, Cappetti A et al. The CD40/CD40 ligand system is involved in the pathogenesis of pemphigus. Clin Immunol 2007; 124: 22–25.

    Article  CAS  Google Scholar 

  54. Caproni M, Giomi B, Cardinali C, Salvatore E, Pestelli E, D'Agata A et al. Further support for a role for Th2-like cytokines in blister formation of pemphigus. Clin Immunol 2001; 98: 264–271.

    Article  CAS  Google Scholar 

  55. Hase H, Kanno Y, Kojima M, Hasegawa K, Sakurai D, Kojima H et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood 2004; 103: 2257–2265.

    Article  CAS  Google Scholar 

  56. Braun-Prado K, Vieira Mion AL, Farah PN, Culpi L, Petzl-Erler ML . HLA class I polymorphism, as characterised by PCR–SSOP, in a Brazilian exogamic population. Tissue Antigens 2000; 56: 417–427.

    Article  CAS  Google Scholar 

  57. Probst CM, Bompeixe EP, Pereira NF, de O Dalalio MM, Visentainer JE, Tsuneto LT et al. HLA polymorphism and evaluation of European, African, and Amerindian contribution to the white and mulatto populations from Parana, Brazil. Hum Biol 2000; 72: 597–617.

    CAS  PubMed  Google Scholar 

  58. Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC . Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 1991; 48: 137–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller MP . RxC: A Program for the Analysis of Contingency Tables via the Metropolis Algorithm Computer. Department of Biological Sciences, Northern Arizona University: Flagstaff, 1997.

    Google Scholar 

  60. Guo SW, Thompson EA . Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 1992; 48: 361–372.

    Article  CAS  Google Scholar 

  61. Excoffier L, Laval G, Schneider S . Arlequin ver. 3.0: an integrated software package for populations genetics data analysis. Evol Bioinform online 2005; 1: 47–50.

    Article  CAS  Google Scholar 

  62. Svejgaard A, Ryder LP . HLA and disease associations: detecting the strongest association. Tissue Antigens 1994; 43: 18–27.

    Article  CAS  Google Scholar 

  63. Boehringer S, Epplen JT, Krawczak M . Genetic association studies of bronchial asthma—a need for Bonferroni correction? Hum Genet 2000; 107: 197.

    Article  CAS  Google Scholar 

  64. Nyholt DR . Genetic case–control association studies—correcting for multiple testing. Hum Genet 2001; 109: 564–567.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the individuals of the populations analyzed in this research for their collaboration. The support and friendship of our laboratory colleagues are highly valued. We are also grateful for the support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Institutos do Milênio, Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Petzl-Erler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malheiros, D., Petzl-Erler, M. Individual and epistatic effects of genetic polymorphisms of B-cell co-stimulatory molecules on susceptibility to pemphigus foliaceus. Genes Immun 10, 547–558 (2009). https://doi.org/10.1038/gene.2009.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.36

Keywords

This article is cited by

Search

Quick links