Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The unique structural and functional features of CXCL12

Abstract

The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, including embryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration of hematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity is tightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans, each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNA stability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathological conditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a proper presentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can alter their signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migration assays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from the environment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal of NH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitration of tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellular environment and discusses the different levels of CXCL12 activity regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121–127.

    CAS  Google Scholar 

  2. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2014; 66: 1–79.

    PubMed  PubMed Central  Google Scholar 

  3. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635–638.

    CAS  PubMed  Google Scholar 

  4. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996; 184: 1101–1109.

    CAS  PubMed  Google Scholar 

  5. Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 1998; 91: 100–110.

    CAS  PubMed  Google Scholar 

  6. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    CAS  PubMed  Google Scholar 

  7. Yoshie O, Imai T, Nomiyama H. Chemokines in immunity. Adv Immunol 2001; 78: 57–110.

    CAS  PubMed  Google Scholar 

  8. Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T et al. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 1995; 28: 495–500.

    CAS  PubMed  Google Scholar 

  9. Yu L, Cecil J, Peng SB, Schrementi J, Kovacevic S, Paul D et al. Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene 2006; 374: 174–179.

    CAS  PubMed  Google Scholar 

  10. Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 2006; 7: 243.

    PubMed  PubMed Central  Google Scholar 

  11. DeVries ME, Kelvin AA, Xu L, Ran L, Robinson J, Kelvin DJ. Defining the origins and evolution of the chemokine/chemokine receptor system. J Immunol 2006; 176: 401–415.

    CAS  PubMed  Google Scholar 

  12. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    CAS  PubMed  Google Scholar 

  13. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393: 591–594.

    CAS  PubMed  Google Scholar 

  14. Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff RM, Li M et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci USA 2007; 104: 14759–14764.

    CAS  PubMed  Google Scholar 

  15. Gerrits H, van Ingen Schenau DS, Bakker NE, van Disseldorp AJ, Strik A, Hermens LS et al. Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice. Genesis 2008; 46: 235–245.

    CAS  PubMed  Google Scholar 

  16. Loetscher M, Geiser T, O'Reilly T, Zwahlen R, Baggiolini M, Moser B. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem 1994; 269: 232–237.

    CAS  PubMed  Google Scholar 

  17. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272: 872–877.

    CAS  PubMed  Google Scholar 

  18. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 1996; 382: 829–833.

    CAS  PubMed  Google Scholar 

  19. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382: 833–835.

    CAS  PubMed  Google Scholar 

  20. Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol 2015; 6: 429.

    PubMed  PubMed Central  Google Scholar 

  21. Power CA. Knock out models to dissect chemokine receptor function in vivo. J Immunol Methods 2003; 273: 73–82.

    CAS  PubMed  Google Scholar 

  22. Gupta SK, Pillarisetti K. Cutting edge: CXCR4-Lo: molecular cloning and functional expression of a novel human CXCR4 splice variant. J Immunol 1999; 163: 2368–2372.

    CAS  PubMed  Google Scholar 

  23. Duquenne C, Psomas C, Gimenez S, Guigues A, Carles MJ, Barbuat C et al. The two human CXCR4 isoforms display different HIV receptor activities: consequences for the emergence of X4 strains. J Immunol 2014; 193: 4188–4194.

    CAS  PubMed  Google Scholar 

  24. Heesen M, Berman MA, Hopken UE, Gerard NP, Dorf ME. Alternate splicing of mouse fusin/CXC chemokine receptor-4: stromal cell-derived factor-1alpha is a ligand for both CXC chemokine receptor-4 isoforms. J Immunol 1997; 158: 3561–3564.

    CAS  PubMed  Google Scholar 

  25. Veldkamp CT, Ziarek JJ, Su J, Basnet H, Lennertz R, Weiner JJ et al. Monomeric structure of the cardioprotective chemokine SDF-1/CXCL12. Protein Sci 2009; 18: 1359–1369.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Siciliano SJ, Rollins TE, DeMartino J, Konteatis Z, Malkowitz L, Van RG et al. Two-site binding of C5a by its receptor: an alternative binding paradigm for G protein-coupled receptors. Proc Natl Acad Sci USA 1994; 91: 1214–1218.

    CAS  PubMed  Google Scholar 

  27. Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, Arenzana-Seisdedos F et al. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 1997; 16: 6996–7007.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigne A et al. New paradigms in chemokine receptor signal transduction: moving beyond the two-site model. Biochem Pharmacol 2016; 114: 53–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rubin JB. Chemokine signaling in cancer: one hump or two? Semin Cancer Biol 2009; 19: 116–122.

    CAS  PubMed  Google Scholar 

  30. Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim Biophys Acta 2007; 1768: 952–963.

    CAS  PubMed  Google Scholar 

  31. Vila-Coro AJ, Rodriguez-Frade JM, Martin De AA, Moreno-Ortiz MC, Martinez A, Mellado M. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 1999; 13: 1699–1710.

    CAS  PubMed  Google Scholar 

  32. Zhang XF, Wang JF, Matczak E, Proper JA, Groopman JE. Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 2001; 97: 3342–3348.

    CAS  PubMed  Google Scholar 

  33. Soldevila G, Licona I, Salgado A, Ramirez M, Chavez R, Garcia-Zepeda E. Impaired chemokine-induced migration during T-cell development in the absence of Jak 3. Immunology 2004; 112: 191–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Soriano SF, Serrano A, Hernanz-Falcon P, Martin DeAA, Monterrubio M, Martinez C et al. Chemokines integrate JAK/STAT and G-protein pathways during chemotaxis and calcium flux responses. Eur J Immunol 2003; 33: 1328–1333.

    CAS  PubMed  Google Scholar 

  35. Moriguchi M, Hissong BD, Gadina M, Yamaoka K, Tiffany HL, Murphy PM et al. CXCL12 signaling is independent of Jak2 and Jak3. J Biol Chem 2005; 280: 17408–17414.

    CAS  PubMed  Google Scholar 

  36. Sun Y, Cheng Z, Ma L, Pei G. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 2002; 277: 49212–49219.

    CAS  PubMed  Google Scholar 

  37. Shukla AK, Xiao K, Lefkowitz RJ. Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 2011; 36: 457–469.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Thelen M. Dancing to the tune of chemokines. Nat Immunol 2001; 2: 129–134.

    CAS  PubMed  Google Scholar 

  39. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005; 280: 35760–35766.

    CAS  PubMed  Google Scholar 

  40. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203: 2201–2213.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhaut C et al. Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 1989; 244: 569–572.

    CAS  PubMed  Google Scholar 

  42. Shimizu N, Soda Y, Kanbe K, Liu HY, Mukai R, Kitamura T et al. A putative G protein-coupled receptor, RDC1, is a novel coreceptor for human and simian immunodeficiency viruses. J Virol 2000; 74: 619–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chatterjee M, Borst O, Walker B, Fotinos A, Vogel S, Seizer P et al. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling. Circ Res 2014; 115: 939–949.

    CAS  PubMed  Google Scholar 

  44. Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, Rehemtulla A et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA 2007; 104: 15735–15740.

    CAS  PubMed  Google Scholar 

  45. Luker KE, Lewin SA, Mihalko LA, Schmidt BT, Winkler JS, Coggins NL et al. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 2012; 31: 4750–4758.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes HG et al. CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 2010; 5: e9175.

    PubMed  PubMed Central  Google Scholar 

  47. Klein KR, Karpinich NO, Espenschied ST, Willcockson HH, Dunworth WP, Hoopes SL et al. Decoy receptor CXCR7 modulates adrenomedullin-mediated cardiac and lymphatic vascular development. Dev Cell 2014; 30: 528–540.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP et al. Beta-arrestin- but not G protein-mediated signaling by the ‘decoy’ receptor CXCR7. Proc Natl Acad Sci USA 2010; 107: 628–632.

    PubMed  Google Scholar 

  49. Ödemis V, Lipfert J, Kraft R, Hajek P, Abraham G, Hattermann K et al. The presumed atypical chemokine receptor CXCR7 signals through G(i/o) proteins in primary rodent astrocytes and human glioma cells. Glia 2012; 60: 372–381.

    PubMed  Google Scholar 

  50. Wang Y, Li G, Stanco A, Long JE, Crawford D, Potter GB et al. CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 2011; 69: 61–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar R, Tripathi V, Ahmad M, Nath N, Mir RA, Chauhan SS et al. CXCR7 mediated Gialpha independent activation of ERK and Akt promotes cell survival and chemotaxis in T cells. Cell Immunol 2012; 272: 230–241.

    CAS  PubMed  Google Scholar 

  52. Chen Q, Zhang M, Li Y, Xu D, Wang Y, Song A et al. CXCR7 mediates neural progenitor cells migration to CXCL12 independent of CXCR4. Stem Cells 2015; 33: 2574–2585.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 2008; 132: 463–473.

    CAS  PubMed  Google Scholar 

  54. Wang H, Beaty N, Chen S, Qi CF, Masiuk M, Shin DM et al. The CXCR7 chemokine receptor promotes B-cell retention in the splenic marginal zone and serves as a sink for CXCL12. Blood 2012; 119: 465–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Babcock GJ, Farzan M, Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem 2003; 278: 3378–3385.

    CAS  PubMed  Google Scholar 

  56. Toth PT, Ren D, Miller RJ. Regulation of CXCR4 receptor dimerization by the chemokine SDF-1alpha and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study. J Pharmacol Exp Ther 2004; 310: 8–17.

    CAS  PubMed  Google Scholar 

  57. Percherancier Y, Berchiche YA, Slight I, Volkmer-Engert R, Tamamura H, Fujii N et al. Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 2005; 280: 9895–9903.

    CAS  PubMed  Google Scholar 

  58. Veldkamp CT, Seibert C, Peterson FC, De la Cruz NB, Haugner JC III, Basnet H et al. Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal 2008; 1: ra4.

    PubMed  PubMed Central  Google Scholar 

  59. Drury LJ, Ziarek JJ, Gravel S, Veldkamp CT, Takekoshi T, Hwang ST et al. Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways. Proc Natl Acad Sci USA 2011; 108: 17655–17660.

    CAS  PubMed  Google Scholar 

  60. Ray P, Lewin SA, Mihalko LA, Lesher-Perez SC, Takayama S, Luker KE et al. Secreted CXCL12 (SDF-1) forms dimers under physiological conditions. Biochem J 2012; 442: 433–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schiraldi M, Raucci A, Munoz LM, Livoti E, Celona B, Venereau E et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 2012; 209: 551–563.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Carlson J, Baxter SA, Dreau D, Nesmelova IV. The heterodimerization of platelet-derived chemokines. Biochim Biophys Acta 2013; 1834: 158–168.

    CAS  PubMed  Google Scholar 

  63. von Hundelshausen P, Agten SM, Eckardt V, Blanchet X, Schmitt MM, Ippel H et al. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Sci Transl Med 2017; 9: eaah6650.

    PubMed  Google Scholar 

  64. Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 2009; 113: 6085–6093.

    CAS  PubMed  Google Scholar 

  65. Decaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem 2011; 286: 32188–32197.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hernandez L, Magalhaes MA, Coniglio SJ, Condeelis JS, Segall JE. Opposing roles of CXCR4 and CXCR7 in breast cancer metastasis. Breast Cancer Res 2011; 13: R128.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, Pienta KJ et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 2008; 283: 4283–4294.

    CAS  PubMed  Google Scholar 

  68. Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE. Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu Rev Biochem 2005; 74: 385–410.

    CAS  PubMed  Google Scholar 

  69. Rueda P, Richart A, Recalde A, Gasse P, Vilar J, Guerin C et al. Homeostatic and tissue reparation defaults in mice carrying selective genetic invalidation of CXCL12/proteoglycan interactions. Circulation 2012; 126: 1882–1895.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sadir R, Imberty A, Baleux F, Lortat-Jacob H. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J Biol Chem 2004; 279: 43854–43860.

    CAS  PubMed  Google Scholar 

  71. Amara A, Lorthioir O, Valenzuela A, Magerus A, Thelen M, Montes M et al. Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine. J Biol Chem 1999; 274: 23916–23925.

    CAS  PubMed  Google Scholar 

  72. O'Boyle G, Mellor P, Kirby JA, Ali S. Anti-inflammatory therapy by intravenous delivery of non-heparan sulfate-binding CXCL12. FASEB J 2009; 23: 3906–3916.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sadir R, Baleux F, Grosdidier A, Imberty A, Lortat-Jacob H. Characterization of the stromal cell-derived factor-1alpha-heparin complex. J Biol Chem 2001; 276: 8288–8296.

    CAS  PubMed  Google Scholar 

  74. Richter R, Jochheim-Richter A, Ciuculescu F, Kollar K, Seifried E, Forssmann U et al. Identification and characterization of circulating variants of CXCL12 from human plasma: effects on chemotaxis and mobilization of hematopoietic stem and progenitor cells. Stem Cells Dev 2014; 23: 1959–1974.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Janssens R, Mortier A, Boff D, Ruytinx P, Gouwy M, Vantilt B et al. Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes. Biochem Pharmacol 2017; 132: 92–101.

    CAS  PubMed  Google Scholar 

  76. Laguri C, Sadir R, Rueda P, Baleux F, Gans P, Arenzana-Seisdedos F et al. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4. PLoS One 2007; 2: e1110.

    PubMed  PubMed Central  Google Scholar 

  77. Rueda P, Balabanian K, Lagane B, Staropoli I, Chow K, Levoye A et al. The CXCL12gamma chemokine displays unprecedented structural and functional properties that make it a paradigm of chemoattractant proteins. PLoS One 2008; 3: e2543.

    PubMed  PubMed Central  Google Scholar 

  78. Connell BJ, Sadir R, Baleux F, Laguri C, Kleman JP, Luo L et al. Heparan sulfate differentially controls CXCL12alpha- and CXCL12gamma-mediated cell migration through differential presentation to their receptor CXCR4. Sci Signal 2016; 9: ra107.

    PubMed  Google Scholar 

  79. Fermas S, Gonnet F, Sutton A, Charnaux N, Mulloy B, Du Y et al. Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis. Glycobiology 2008; 18: 1054–1064.

    CAS  PubMed  Google Scholar 

  80. Santiago B, Calonge E, Del Rey MJ, Gutierrez-Canas I, Izquierdo E, Usategui A et al. CXCL12 gene expression is upregulated by hypoxia and growth arrest but not by inflammatory cytokines in rheumatoid synovial fibroblasts. Cytokine 2011; 53: 184–190.

    CAS  PubMed  Google Scholar 

  81. De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 2004; 104: 3472–3482.

    CAS  PubMed  Google Scholar 

  82. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10: 858–864.

    CAS  PubMed  Google Scholar 

  83. Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 2005; 65: 465–472.

    CAS  PubMed  Google Scholar 

  84. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003; 198: 1391–1402.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Schutyser E, Su Y, Yu Y, Gouwy M, Zaja-Milatovic S, Van Damme J et al. Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells. Eur Cytokine Netw 2007; 18: 59–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Esencay M, Sarfraz Y, Zagzag D. CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1alpha. BMC Cancer 2013; 13: 347.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu H, Xue W, Ge G, Luo X, Li Y, Xiang H et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun 2010; 401: 509–515.

    CAS  PubMed  Google Scholar 

  88. Yu PF, Huang Y, Xu CL, Lin LY, Han YY, Sun WH et al. Downregulation of CXCL12 in mesenchymal stromal cells by TGFbeta promotes breast cancer metastasis. Oncogene 2017; 36: 840–849.

    CAS  PubMed  Google Scholar 

  89. Altenburg JD, Broxmeyer HE, Jin Q, Cooper S, Basu S, Alkhatib G. A naturally occurring splice variant of CXCL12/stromal cell-derived factor 1 is a potent human immunodeficiency virus type 1 inhibitor with weak chemotaxis and cell survival activities. J Virol 2007; 81: 8140–8148.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang Z, Shi T, Zhou Q, Shi S, Zhao R, Shi H et al. miR-141 Regulates colonic leukocytic trafficking by targeting CXCL12beta during murine colitis and human Crohn's disease. Gut 2014; 63: 1247–1257.

    CAS  PubMed  Google Scholar 

  91. McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH et al. Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol 2008; 172: 799–808.

    PubMed  PubMed Central  Google Scholar 

  92. Gouwy M, Schiraldi M, Struyf S, Van Damme J, Uguccioni M. Possible mechanisms involved in chemokine synergy fine tuning the inflammatory response. Immunol Lett 2012; 145: 10–14.

    CAS  PubMed  Google Scholar 

  93. Gouwy M, Struyf S, Leutenez L, Portner N, Sozzani S, Van Damme J. Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells. Immunobiology 2014; 219: 218–229.

    CAS  PubMed  Google Scholar 

  94. Proost P, Struyf S, Schols D, Durinx C, Wuyts A, Lenaerts JP et al. Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett 1998; 432: 73–76.

    CAS  PubMed  Google Scholar 

  95. Shioda T, Kato H, Ohnishi Y, Tashiro K, Ikegawa M, Nakayama EE et al. Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor-1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc Natl Acad Sci USA 1998; 95: 6331–6336.

    CAS  PubMed  Google Scholar 

  96. Lambeir AM, Proost P, Durinx C, Bal G, Senten K, Augustyns K et al. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem 2001; 276: 29839–29845.

    CAS  PubMed  Google Scholar 

  97. De La Luz SM, Yang F, Narazaki M, Salvucci O, Davis D, Yarchoan R et al. Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 2004; 103: 2452–2459.

    Google Scholar 

  98. Tilton B, Ho L, Oberlin E, Loetscher P, Baleux F, Clark-Lewis I et al. Signal transduction by CXC chemokine receptor 4. Stromal cell-derived factor 1 stimulates prolonged protein kinase B and extracellular signal-regulated kinase 2 activation in T lymphocytes. J Exp Med 2000; 192: 313–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wesley UV, Hatcher JF, Ayvaci ER, Klemp A, Dempsey RJ. Regulation of dipeptidyl peptidase IV in the post-stroke rat brain and in vitro ischemia: implications for chemokine-mediated neural progenitor cell migration and angiogenesis. Mol Neurobiol 2016; 54: 4973–4985.

    PubMed  PubMed Central  Google Scholar 

  100. Christopherson KW, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002; 169: 7000–7008.

    CAS  PubMed  Google Scholar 

  101. Christopherson KW, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    CAS  PubMed  Google Scholar 

  102. Ajami K, Pitman MR, Wilson CH, Park J, Menz RI, Starr AE et al. Stromal cell-derived factors 1alpha and 1beta, inflammatory protein-10 and interferon-inducible T cell chemo-attractant are novel substrates of dipeptidyl peptidase 8. FEBS Lett 2008; 582: 819–825.

    CAS  PubMed  Google Scholar 

  103. Valenzuela-Fernandez A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D et al. Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002; 277: 15677–15689.

    CAS  PubMed  Google Scholar 

  104. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276: 43503–43508.

    CAS  PubMed  Google Scholar 

  105. Delgado MB, Clark-Lewis I, Loetscher P, Langen H, Thelen M, Baggiolini M et al. Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur J Immunol 2001; 31: 699–707.

    CAS  PubMed  Google Scholar 

  106. Davis DA, Singer KE, De La Luz SM, Narazaki M, Yang F, Fales HM et al. Identification of carboxypeptidase N as an enzyme responsible for C-terminal cleavage of stromal cell-derived factor-1alpha in the circulation. Blood 2005; 105: 4561–4568.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Marquez-Curtis L, Jalili A, Deiteren K, Shirvaikar N, Lambeir AM, Janowska-Wieczorek A. Carboxypeptidase M expressed by human bone marrow cells cleaves the C-terminal lysine of stromal cell-derived factor-1alpha: another player in hematopoietic stem/progenitor cell mobilization? Stem Cells 2008; 26: 1211–1220.

    CAS  PubMed  Google Scholar 

  108. Staudt ND, Aicher WK, Kalbacher H, Stevanovic S, Carmona AK, Bogyo M et al. Cathepsin X is secreted by human osteoblasts, digests CXCL12 and impairs adhesion of hematopoietic stem and progenitor cells to osteoblasts. Haematologica 2010; 95: 1452–1460.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Struyf S, Noppen S, Loos T, Mortier A, Gouwy M, Verbeke H et al. Citrullination of CXCL12 differentially reduces CXCR4 and CXCR7 binding with loss of inflammatory and anti-HIV-1 activity via CXCR4. J Immunol 2009; 182: 666–674.

    CAS  PubMed  Google Scholar 

  110. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 2011; 208: 1949–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Janssens R, Mortier A, Boff D, Vanheule V, Gouwy M, Franck C et al. Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity in vitro and abrogates intra-articular lymphocyte recruitment in vivo. Oncotarget 2016; 7: 62439–62459.

    PubMed  PubMed Central  Google Scholar 

  112. Mortier A, Gouwy M, Van DJ, Proost P, Struyf S. CD26/dipeptidylpeptidase IV-chemokine interactions: double-edged regulation of inflammation and tumor biology. J Leukoc Biol 2016; 99: 955–969.

    CAS  PubMed  Google Scholar 

  113. Antonsson B, De Lys P, Dechavanne V, Chevalet L, Boschert U. In vivo processing of CXCL12alpha/SDF-1alpha after intravenous and subcutaneous administration to mice. Proteomics 2010; 10: 4342–4351.

    CAS  PubMed  Google Scholar 

  114. Busso N, Wagtmann N, Herling C, Chobaz-Peclat V, Bischof-Delaloye A, So A et al. Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am J Pathol 2005; 166: 433–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang W, Choi BK, Li W, Lao Z, Lee AY, Souza SC et al. Quantification of intact and truncated stromal cell-derived factor-1alpha in circulation by immunoaffinity enrichment and tandem mass spectrometry. J Am Soc Mass Spectrom 2014; 25: 614–625.

    CAS  PubMed  Google Scholar 

  116. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    CAS  PubMed  Google Scholar 

  117. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Keating GM. Plerixafor: a review of its use in stem-cell mobilization in patients with lymphoma or multiple myeloma. Drugs 2011; 71: 1623–1647.

    CAS  PubMed  Google Scholar 

  119. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 2003; 25: 1106–1118.

    CAS  PubMed  Google Scholar 

  120. György B, Toth E, Tarcsa E, Falus A, Buzas EI. Citrullination: a posttranslational modification in health and disease. Int J Biochem Cell Biol 2006; 38: 1662–1677.

    PubMed  Google Scholar 

  121. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303: 1532–1535.

    CAS  PubMed  Google Scholar 

  122. Moscarello MA, Mastronardi FG, Wood DD. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 2007; 32: 251–256.

    CAS  PubMed  Google Scholar 

  123. Steiner G, Smolen J. Autoantibodies in rheumatoid arthritis and their clinical significance. Arthritis Res 2002; 4 (Suppl 2): S1–S5.

    PubMed  PubMed Central  Google Scholar 

  124. Mortier A, Loos T, Gouwy M, Ronsse I, Van Damme J, Proost P. Posttranslational modification of the NH2-terminal region of CXCL5 by proteases or peptidylarginine Deiminases (PAD) differently affects its biological activity. J Biol Chem 2010; 285: 29750–29759.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Yoshida K, Korchynskyi O, Tak PP, Isozaki T, Ruth JH, Campbell PL et al. Citrullination of epithelial neutrophil-activating peptide 78/CXCL5 results in conversion from a non-monocyte-recruiting chemokine to a monocyte-recruiting chemokine. Arthritis Rheumatol 2014; 66: 2716–2727.

    CAS  PubMed  Google Scholar 

  126. Proost P, Loos T, Mortier A, Schutyser E, Gouwy M, Noppen S et al. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 2008; 205: 2085–2097.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Loos T, Mortier A, Gouwy M, Ronsse I, Put W, Lenaerts JP et al. Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood 2008; 112: 2648–2656.

    CAS  PubMed  Google Scholar 

  128. Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001; 2: 907–916.

    CAS  PubMed  Google Scholar 

  129. Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA 2001; 98: 12056–12061.

    CAS  PubMed  Google Scholar 

  130. Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA. Effects of reactive oxygen and nitrogen metabolites on RANTES- and IL-5-induced eosinophil chemotactic activity in vitro. Am J Pathol 1999; 155: 591–598.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA. Effects of reactive oxygen and nitrogen metabolites on eotaxin-induced eosinophil chemotactic activity in vitro. Am J Respir Cell Mol Biol 2000; 22: 61–67.

    CAS  PubMed  Google Scholar 

  132. Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA. Inhibition of MIP-1alpha-induced human neutrophil and monocyte chemotactic activity by reactive oxygen and nitrogen metabolites. J Lab Clin Med 2000; 135: 161–169.

    CAS  PubMed  Google Scholar 

  133. Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA. Reactive nitrogen and oxygen species attenuate interleukin 8-induced neutrophil chemotactic activity in vitro. J Biol Chem 2000; 275: 10826–10830.

    CAS  PubMed  Google Scholar 

  134. Barker CE, Thompson S, O'Boyle G, Lortat-Jacob H, Sheerin NS, Ali S et al. CCL2 nitration is a negative regulator of chemokine-mediated inflammation. Sci Rep 2017; 7: 44384.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA. Effects of reactive oxygen and nitrogen metabolites on MCP-1-induced monocyte chemotactic activity in vitro. Am J Physiol 1999; 277 (3 Pt 1): L543–L549.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (I.A.P. Project 7/40), the Fund for Scientific Research of Flanders (FWO-Vlaanderen Projects G.0D25.17N, G.0764.14, and G.0D66.13), the Concerted Research Actions of the Regional Government of Flanders (GOA/12/017) and C1 funding (C16/17/010) of KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Proost.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssens, R., Struyf, S. & Proost, P. The unique structural and functional features of CXCL12. Cell Mol Immunol 15, 299–311 (2018). https://doi.org/10.1038/cmi.2017.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.107

This article is cited by

Search

Quick links