Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Multifaceted roles of TRIM38 in innate immune and inflammatory responses

Abstract

The tripartite motif-containing (TRIM) proteins represent the largest E3 ubiquitin ligase family. The multifaceted roles of TRIM38 in innate immunity and inflammation have been intensively investigated in recent years. TRIM38 is essential for cytosolic RNA or DNA sensor-mediated innate immune responses to both RNA and DNA viruses, while negatively regulating TLR3/4- and TNF/IL-1β-triggered inflammatory responses. In these processes, TRIM38 acts as an E3 ubiquitin or SUMO ligase, which targets key cellular signaling components, or as an enzymatic activity-independent regulator. This review summarizes recent advances that highlight the critical roles of TRIM38 in the regulation of proper innate immune and inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Akira S, Uematsu S, Takeuchi O . Pathogen recognition and innate immunity. Cell 2006; 124: 783–801.

    Article  CAS  PubMed  Google Scholar 

  2. Kawai T, Akira S . Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34: 637–650.

    CAS  PubMed  Google Scholar 

  3. Kanneganti TD, Lamkanfi M, Nunez G . Intracellular NOD-like receptors in host defense and disease. Immunity 2007; 27: 549–559.

    CAS  PubMed  Google Scholar 

  4. Cai X, Chiu YH, Chen ZJ . The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 2014; 54: 289–296.

    CAS  PubMed  Google Scholar 

  5. Ran Y, Shu HB, Wang YY . MITA/STING: a central and multifaceted mediator in innate immune response. Cytokine Growth Factor Rev 2014; 25: 631–639.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Takeuchi O, Akira S . Pattern recognition receptors and inflammation. Cell 2010; 140: 805–820.

    CAS  PubMed  Google Scholar 

  7. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci 2011; 68: 765–783.

    CAS  PubMed  Google Scholar 

  8. Davis BK, Wen H, Ting JP . The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 2011; 29: 707–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shu HB, Wang YY . Adding to the STING. Immunity 2014; 41: 871–873.

    CAS  PubMed  Google Scholar 

  10. Ozato K, Shin DM, Chang TH, Morse HC 3rd . TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 2008; 8: 849–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Versteeg GA, Benke S, Garcia-Sastre A, Rajsbaum R . InTRIMsic immunity: positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev 2014; 25: 563–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Amir RE, Iwai K, Ciechanover A . The NEDD8 pathway is essential for SCF(beta -TrCP)-mediated ubiquitination and processing of the NF-kappa B precursor p105. J Biol Chem 2002; 277: 23253–23259.

    CAS  PubMed  Google Scholar 

  13. Arimoto K, Konishi H, Shimotohno K . UbcH8 regulates ubiquitin and ISG15 conjugation to RIG-I. Mol Immunol 2008; 45: 1078–1084.

    CAS  PubMed  Google Scholar 

  14. Begitt A, Droescher M, Knobeloch KP, Vinkemeier U . SUMO conjugation of STAT1 protects cells from hyperresponsiveness to IFNgamma. Blood 2011; 118: 1002–1007.

    CAS  PubMed  Google Scholar 

  15. Kim MJ, Hwang SY, Imaizumi T, Yoo JY . Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol 2008; 82: 1474–1483.

    CAS  PubMed  Google Scholar 

  16. Regad T, Chelbi-Alix MK . Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 2001; 20: 7274–7286.

    CAS  PubMed  Google Scholar 

  17. Vatsyayan J, Qing G, Xiao G, Hu J . SUMO1 modification of NF-kappaB2/p100 is essential for stimuli-induced p100 phosphorylation and processing. EMBO Rep 2008; 9: 885–890.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mnayer L, Khuri S, Merheby HA, Meroni G, Elsas LJ . A structure-function study of MID1 mutations associated with a mild Opitz phenotype. Mol Genet Metab 2006; 87: 198–203.

    CAS  PubMed  Google Scholar 

  19. Short KM, Cox TC . Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 2006; 281: 8970–8980.

    CAS  PubMed  Google Scholar 

  20. Bell JL, Malyukova A, Holien JK, Koach J, Parker MW, Kavallaris M et al. TRIM16 acts as an E3 ubiquitin ligase and can heterodimerize with other TRIM family members. PLoS One 2012; 7: e37470.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20: 2140–2151.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cainarca S, Messali S, Ballabio A, Meroni G . Functional characterization of the Opitz syndrome gene product (midin): evidence for homodimerization and association with microtubules throughout the cell cycle. Hum Mol Genet 1999; 8: 1387–1396.

    CAS  PubMed  Google Scholar 

  23. Cao T, Borden KL, Freemont PS, Etkin LD . Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution. J Cell Sci 1997; 110: 1563–1571.

    CAS  PubMed  Google Scholar 

  24. Napolitano LM, Meroni G . TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. IUBMB Life 2012; 64: 64–71.

    CAS  PubMed  Google Scholar 

  25. Nisole S, Stoye JP, Saib A . TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 2005; 3: 799–808.

    CAS  PubMed  Google Scholar 

  26. Yap MW, Nisole S, Stoye JP . A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 2005; 15: 73–78.

    CAS  PubMed  Google Scholar 

  27. Hu MM, Yang Q, Zhang J, Liu SM, Zhang Y, Lin H et al. TRIM38 inhibits TNFalpha- and IL-1beta-triggered NF-kappaB activation by mediating lysosome-dependent degradation of TAB2/3. Proc Natl Acad Sci USA 2014; 111: 1509–1514.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu MM, Xie XQ, Yang Q, Liao CY, Ye W, Lin H et al. TRIM38 negatively regulates TLR3/4-mediated innate immune and inflammatory responses by two sequential and distinct mechanisms. J Immunol 2015; 195: 4415–4425.

    CAS  PubMed  Google Scholar 

  29. Zhao W, Wang L, Zhang M, Wang P, Yuan C, Qi J et al. Tripartite motif-containing protein 38 negatively regulates TLR3/4- and RIG-I-mediated IFN-beta production and antiviral response by targeting NAP1. J Immunol 2012; 188: 5311–5318.

    CAS  PubMed  Google Scholar 

  30. Zhao W, Wang L, Zhang M, Yuan C, Gao C . E3 ubiquitin ligase tripartite motif 38 negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF receptor-associated factor 6 in macrophages. J Immunol 2012; 188: 2567–2574.

    CAS  PubMed  Google Scholar 

  31. Xue Q, Zhou Z, Lei X, Liu X, He B, Wang J et al. TRIM38 negatively regulates TLR3-mediated IFN-beta signaling by targeting TRIF for degradation. PLoS One 2012; 7: e46825.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lester SN, Li K . Toll-like receptors in antiviral innate immunity. J Mol Biol 426: 1246–1264.

    CAS  PubMed  Google Scholar 

  33. Zhu S, Wang G, Lei X, Flavell RA . Mex3B: a coreceptor to present dsRNA to TLR3. Cell Res 2016; 26: 391–392.

    PubMed  PubMed Central  Google Scholar 

  34. Yang Y, Wang SY, Huang ZF, Zou HM, Yan BR, Luo WW et al. The RNA-binding protein Mex3B is a coreceptor of Toll-like receptor 3 in innate antiviral response. Cell Res 2016; 26: 288–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu YH, Zhang Y, Jiang LQ, Wang S, Lei CQ, Sun MS et al. WDFY1 mediates TLR3/4 signaling by recruiting TRIF. EMBO Rep 2015; 16: 447–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Akira S, Takeda K, Kaisho T . Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675–680.

    CAS  PubMed  Google Scholar 

  37. Yang Y, Liao B, Wang S, Yan B, Jin Y, Shu HB et al. E3 ligase WWP2 negatively regulates TLR3-mediated innate immune response by targeting TRIF for ubiquitination and degradation. Proc Natl Acad Sci USA 2013; 110: 5115–5120.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoneyama M, Fujita T . Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 2008; 29: 178–181.

    CAS  PubMed  Google Scholar 

  39. Nistal-Villan E, Gack MU, Martinez-Delgado G, Maharaj NP, Inn KS, Yang H et al. Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production. J Biol Chem 2010; 285: 20252–20261.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gack MU, Nistal-Villan E, Inn KS, Garcia-Sastre A, Jung JU . Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J Virol 2010; 84: 3220–3229.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, Finberg RW et al. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 2013; 38: 437–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007; 446: 916–920.

    CAS  PubMed  Google Scholar 

  43. Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010; 141: 315–330.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan J, Li Q, Mao AP, Hu MM, Shu HB . TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J Mol Cell Biol 2014; 6: 154–163.

    CAS  PubMed  Google Scholar 

  45. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB . VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 2005; 19: 727–740.

    CAS  PubMed  Google Scholar 

  46. Seth RB, Sun L, Ea CK, Chen ZJ . Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005; 122: 669–682.

    CAS  PubMed  Google Scholar 

  47. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 2005; 437: 1167–1172.

    CAS  PubMed  Google Scholar 

  48. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 2005; 6: 981–988.

    CAS  PubMed  Google Scholar 

  49. Wang YY, Liu LJ, Zhong B, Liu TT, Li Y, Yang Y et al. WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-kappaB activation. Proc Natl Acad Sci USA 2010; 107: 815–820.

    CAS  PubMed  Google Scholar 

  50. Zhou Z, Jia X, Xue Q, Dou Z, Ma Y, Zhao Z et al. TRIM14 is a mitochondrial adaptor that facilitates retinoic acid-inducible gene-I-like receptor-mediated innate immune response. Proc Natl Acad Sci USA 2014; 111: E245–E254.

    CAS  PubMed  Google Scholar 

  51. Chen LT, Hu MM, Xu ZS, Liu Y, Shu HB . MSX1 Modulates RLR-Mediated Innate Antiviral Signaling by Facilitating Assembly of TBK1-Associated Complexes. J Immunol 2016; 197: 199–207.

    CAS  PubMed  Google Scholar 

  52. Lei CQ, Zhong B, Zhang Y, Zhang J, Wang S, Shu HB . Glycogen synthase kinase 3beta regulates IRF3 transcription factor-mediated antiviral response via activation of the kinase TBK1. Immunity 2010; 33: 878–889.

    CAS  PubMed  Google Scholar 

  53. Liu S, Chen J, Cai X, Wu J, Chen X, Wu YT et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife 2013; 2: e00785.

    PubMed  PubMed Central  Google Scholar 

  54. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ . MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 2011; 146: 448–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Arimoto K, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimotohno K . Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci USA 2007; 104: 7500–7505.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen W, Han C, Xie B, Hu X, Yu Q, Shi L et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 2013; 152: 467–478.

    CAS  PubMed  Google Scholar 

  57. Hao Q, Jiao S, Shi Z, Li C, Meng X, Zhang Z et al. A non-canonical role of the p97 complex in RIG-I antiviral signaling. EMBO J 2015; 34: 2903–2920.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhong B, Zhang Y, Tan B, Liu TT, Wang YY, Shu HB . The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. J Immunol 2010; 184: 6249–6255.

    CAS  PubMed  Google Scholar 

  59. Du J, Zhang D, Zhang W, Ouyang G, Wang J, Liu X et al. pVHL negatively regulates antiviral signaling by targeting MAVS for proteasomal degradation. J Immunol 2015; 195: 1782–1790.

    CAS  PubMed  Google Scholar 

  60. Pan Y, Li R, Meng JL, Mao HT, Zhang Y, Zhang J . Smurf2 negatively modulates RIG-I-dependent antiviral response by targeting VISA/MAVS for ubiquitination and degradation. J Immunol 2014; 192: 4758–4764.

    CAS  PubMed  Google Scholar 

  61. Zhou X, You F, Chen H, Jiang Z . Poly(C)-binding protein 1 (PCBP1) mediates housekeeping degradation of mitochondrial antiviral signaling (MAVS). Cell Res 2012; 22: 717–727.

    CAS  PubMed  Google Scholar 

  62. Mi Z, Fu J, Xiong Y, Tang H . SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein Cell 2010; 1: 275–283.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fu J, Xiong Y, Xu Y, Cheng G, Tang H . MDA5 is SUMOylated by PIAS2beta in the upregulation of type I interferon signaling. Mol Immunol 2011; 48: 415–422.

    CAS  PubMed  Google Scholar 

  64. Ming-Ming Hu C-YL, Yang Qing, Xie Xue-Qin, Shu Hong-Bing . Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5. J Exp Med 2016 in revision.

  65. Liu X, Lei X, Zhou Z, Sun Z, Xue Q, Wang J et al. Enterovirus 71 induces degradation of TRIM38, a potential E3 ubiquitin ligase. Virol J 2011; 8: 61.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hartlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U, Anugula S et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 2015; 42: 332–343.

    PubMed  Google Scholar 

  67. Sun L, Wu J, Du F, Chen X, Chen ZJ . Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2012; 339: 786–791.

    PubMed  Google Scholar 

  68. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ . Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 2013; 341: 1390–1394.

    CAS  PubMed  Google Scholar 

  69. Chiu YH, Macmillan JB, Chen ZJ . RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 2009; 138: 576–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007; 448: 501–505.

    CAS  PubMed  Google Scholar 

  71. Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 2012; 13: 1155–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 2010; 11: 997–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Y, Chen R, Zhou Q, Xu Z, Li C, Wang S et al. LSm14A is a processing body-associated sensor of viral nucleic acids that initiates cellular antiviral response in the early phase of viral infection. Proc Natl Acad Sci USA 2012; 109: 11770–11775.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL . DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife 2012; 1: e00047.

    PubMed  PubMed Central  Google Scholar 

  75. Kim T, Pazhoor S, Bao M, Zhang Z, Hanabuchi S, Facchinetti V et al. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci USA 2010; 107: 15181–15186.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ, Barber GN et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci USA 2013; 110: 2969–2974.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiao TS, Fitzgerald KA . The cGAS-STING pathway for DNA sensing. Mol Cell 2013; 51: 135–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kranzusch PJ, Vance RE . cGAS dimerization entangles DNA recognition. Immunity 2013; 39: 992–994.

    CAS  PubMed  Google Scholar 

  79. Ishikawa H, Barber GN . STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008; 455: 674–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 2008; 29: 538–550.

    CAS  PubMed  Google Scholar 

  81. Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N . STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host Microbe 2015; 18: 157–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou Q, Lin H, Wang S, Wang S, Ran Y, Liu Y et al. The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING-dependent innate immune signaling. Cell Host Microbe 2014; 16: 450–461.

    CAS  PubMed  Google Scholar 

  83. Luo WW, Li S, Li C, Lian H, Yang Q, Zhong B et al. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat Immunol 2016; 17: 1057–1066.

    CAS  PubMed  Google Scholar 

  84. Bowie A . The STING in the tail for cytosolic DNA-dependent activation of IRF3. Sci Signal 2012; 5: pe9.

    PubMed  Google Scholar 

  85. Konno H, Konno K, Barber GN . Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 2013; 155: 688–698.

    CAS  PubMed  Google Scholar 

  86. Barber GN . STING: infection, inflammation and cancer. Nat Rev Immunol 2015; 15: 760–770.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol 2016; 17: 369–378.

    CAS  PubMed  Google Scholar 

  88. Wei-Wei Luo H-BS . Delicate Regulations of cGAS-MITA-mediated innate immune response. Cell Mol Immunol 2016.

  89. Seo GJ, Yang A, Tan B, Kim S, Liang Q, Choi Y et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep 2015; 13: 440–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347: aaa2630.

    PubMed  Google Scholar 

  91. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 2010; 33: 765–776.

    CAS  PubMed  Google Scholar 

  92. Zhang J, Hu MM, Wang YY, Shu HB . TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem 2012; 287: 28646–28655.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang Q, Liu X, Cui Y, Tang Y, Chen W, Li S et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 2014; 41: 919–933.

    CAS  PubMed  Google Scholar 

  94. Zhong B, Zhang L, Lei C, Li Y, Mao AP, Yang Y et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 2009; 30: 397–407.

    CAS  PubMed  Google Scholar 

  95. Qin Y, Zhou MT, Hu MM, Hu YH, Zhang J, Guo L et al. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog 2014; 10: e1004358.

    PubMed  PubMed Central  Google Scholar 

  96. Hu MM, Yang Q, Xie XQ, Liao CY, Lin H, Liu TT et al. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity 45: 555–569.

    CAS  PubMed  Google Scholar 

  97. Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R . TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol Life Sci 2008; 65: 2964–2978.

    CAS  PubMed  Google Scholar 

  98. Chen ZJ . Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7: 758–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Weber A, Wasiliew P, Kracht M . Interleukin-1 (IL-1) pathway. Sci Signal 2010; 3: cm1.

    PubMed  Google Scholar 

  100. Chen R, Li M, Zhang Y, Zhou Q, Shu HB . The E3 ubiquitin ligase MARCH8 negatively regulates IL-1beta-induced NF-kappaB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation. Proc Natl Acad Sci USA 2012; 109: 14128–14133.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 2008; 105: 11778–11783.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tian Y, Zhang Y, Zhong B, Wang YY, Diao FC, Wang RP et al. RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. J Biol Chem 2007; 282: 16776–16782.

    CAS  PubMed  Google Scholar 

  103. Gong J, Shen XH, Qiu H, Chen C, Yang RG . Rhesus monkey TRIM5alpha represses HIV-1 LTR promoter activity by negatively regulating TAK1/TAB1/TAB2/TAB3-complex-mediated NF-kappaB activation. Arch Virol 2011; 156: 1997–2006.

    CAS  PubMed  Google Scholar 

  104. Heyninck K, Beyaert R . The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. FEBS Lett 1999; 442: 147–150.

    CAS  PubMed  Google Scholar 

  105. He X, Li Y, Li C, Liu LJ, Zhang XD, Liu Y et al. USP2a negatively regulates IL-1beta- and virus-induced NF-kappaB activation by deubiquitinating TRAF6. J Mol Cell Biol 2013; 5: 39–47.

    CAS  PubMed  Google Scholar 

  106. Xiao N, Li H, Luo J, Wang R, Chen H, Chen J et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration. Biochem J 2012; 441: 979–986.

    CAS  PubMed  Google Scholar 

  107. Yasunaga J, Lin FC, Lu X, Jeang KT . Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling. J Virol 2011; 85: 6212–6219.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G . CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424: 793–796.

    CAS  PubMed  Google Scholar 

  109. Saito K, Kigawa T, Koshiba S, Sato K, Matsuo Y, Sakamoto A et al. The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKgamma. Structure 2004; 12: 1719–1728.

    CAS  PubMed  Google Scholar 

  110. Fan YH, Yu Y, Mao RF, Tan XJ, Xu GF, Zhang H et al. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death Differ 2011; 18: 1547–1560.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    CAS  PubMed  Google Scholar 

  112. Zheng H, Li Q, Chen R, Zhang J, Ran Y, He X et al. The dual-specificity phosphatase DUSP14 negatively regulates tumor necrosis factor- and interleukin-1-induced nuclear factor-kappaB activation by dephosphorylating the protein kinase TAK1. J Biol Chem 2013; 288: 819–825.

    CAS  PubMed  Google Scholar 

  113. Oke V, Wahren-Herlenius M . The immunobiology of Ro52 (TRIM21) in autoimmunity: a critical review. J Autoimmun 2012; 39: 77–82.

    CAS  PubMed  Google Scholar 

  114. O'Brien BA, Archer NS, Simpson AM, Torpy FR, Nassif NT . Association of SLC11A1 promoter polymorphisms with the incidence of autoimmune and inflammatory diseases: a meta-analysis. J Autoimmun 2008; 31: 42–51.

    CAS  PubMed  Google Scholar 

  115. Wolska N, Rybakowska P, Rasmussen A, Brown M, Montgomery C, Klopocki A et al. Brief report: patients with primary Sjogren's syndrome who are positive for autoantibodies to tripartite motif-containing protein 38 show greater disease severity. Arthritis Rheumatol 2016; 68: 724–729.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Retamozo S, Akasbi M, Brito-Zeron P, Bosch X, Bove A, Perez-de-Lis M et al. Anti-Ro52 antibody testing influences the classification and clinical characterisation of primary Sjogren's syndrome. Clin Exp Rheumatol 2012; 30: 686–692.

    PubMed  Google Scholar 

  117. Szczerba BM, Kaplonek P, Wolska N, Podsiadlowska A, Rybakowska PD, Dey P et al. Interaction between innate immunity and Ro52-induced antibody causes Sjogren's syndrome-like disorder in mice. Ann Rheum Dis 2016; 75: 617–622.

    CAS  PubMed  Google Scholar 

  118. Oda H, Nakagawa K, Abe J, Awaya T, Funabiki M, Hijikata A et al. Aicardi-Goutieres syndrome is caused by IFIH1 mutations. Am J Hum Genet 2014; 95: 121–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Rice GI, del Toro Duany Y, Jenkinson EM, Forte GM, Anderson BH, Ariaudo G et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 2014; 46: 503–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Van Eyck L, De Somer L, Pombal D, Bornschein S, Frans G, Humblet-Baron S et al. Brief report: IFIH1 mutation causes systemic lupus erythematosus with selective IgA deficiency. Arthritis Rheumatol 2015; 67: 1592–1597.

    CAS  PubMed  Google Scholar 

  121. Rutsch F, MacDougall M, Lu C, Buers I, Mamaeva O, Nitschke Y et al. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet 2015; 96: 275–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Jang MA, Kim EK, Now H, Nguyen NT, Kim WJ, Yoo JY et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet 2015; 96: 266–274.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Shu laboratory for helpful discussions. The work in the authors’ laboratory is supported by grants from the Ministry of Science and Technology of China (2016YFA0502102, 2014CB910103), the National Natural Science Foundation of China (3163000013, 31521091, and 91429304) and National Postdoctoral Program for Innovative Talents (BX201600116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bing Shu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, MM., Shu, HB. Multifaceted roles of TRIM38 in innate immune and inflammatory responses. Cell Mol Immunol 14, 331–338 (2017). https://doi.org/10.1038/cmi.2016.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.66

Keywords

This article is cited by

Search

Quick links