Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Modulation of host signaling in the inflammatory response by enteropathogenic Escherichia coli virulence proteins

Abstract

To successfully infect host cells and evade the host immune response, a type III secretion system (T3SS) is commonly used by enteric bacterial pathogens such as enteropathogenic Escherichia coli (EPEC). Recent findings have revealed that various effectors are injected into host cells through the T3SS and exert an inhibitory effect on inflammatory signaling pathways, subverting the immune responses to these pathogens. Here we review recent studies aimed at addressing the modulation of several important inflammatory signaling pathways modulated by EPEC effector proteins, such as the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, which provides insight into the unfinished work in this unexplored field and helps to identify novel positions in inflammatory signaling networks for EPEC effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Vivier E, Malissen B . Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat Immunol 2005; 6: 17–21.

    Article  CAS  Google Scholar 

  2. Medzhitov R, Janeway CA . Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295–298.

    Article  CAS  Google Scholar 

  3. Bonilla FA, Oettgen HC . Adaptive immunity. J Allergy Clin Immunol 2010; 1252: S33–S40.

    Article  Google Scholar 

  4. Tato CM, Hunter CA . Host-pathogen interactions: subversion and utilization of the NF-kappa B pathway during infection. Infect Immun 2002; 70: 3311–3317.

    Article  CAS  Google Scholar 

  5. Finlay BB, McFadden G . Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 2006; 124: 767–782.

    Article  CAS  Google Scholar 

  6. Kim DW, Lenzen G, Page AL, Legrain P, Sansonetti PJ, Parsot C et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc Natl Acad Sci USA 2005; 102: 14046–14051.

    Article  CAS  Google Scholar 

  7. Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S . Citrobacter rodentium of mice and man. Cell Microbiol 2005; 7: 1697–1706.

    Article  CAS  Google Scholar 

  8. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB . Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26: 822–880.

    Article  CAS  Google Scholar 

  9. Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 2011; 80: 1420–1438.

    Article  CAS  Google Scholar 

  10. Dean P, Kenny B . The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol 2009; 12: 101–109.

    Article  CAS  Google Scholar 

  11. Ea CK, Deng L, Xia ZP, Pineda G, Chen Z . Activation of IKK by TNF alpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006; 22: 245–257.

    Article  CAS  Google Scholar 

  12. Ajibade AA, Wang HY, Wang R . Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol 2013; 34: 307–316.

    Article  CAS  Google Scholar 

  13. Gao M, Karin M . Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol Cell 2005; 19: 581–593.

    Article  CAS  Google Scholar 

  14. Karin M, Gallagher E . TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 2009; 228: 225–240.

    Article  CAS  Google Scholar 

  15. Mills E, Baruch K, Aviv G, Nitzan M, Rosenshine I . Dynamics of the type III secretion system activity of enteropathogenic Escherichia coli. mBio 2013; 4: e00303–e00313.

    Article  Google Scholar 

  16. Ruchaud-Sparagano M, Muehlen S, Dean P, Kenny B . The enteropathogenic E. coli (EPEC) tir effector inhibits NF-kappa B activity by targeting TNF alpha receptor-associated factors. PLoS Pathog 2011; 7: e1002414.

    Article  CAS  Google Scholar 

  17. Blero D, Payrastre B, Schurmans S, Erneux C . Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Arch 2007; 455: 31–44.

    Article  CAS  Google Scholar 

  18. Yan D, Quan H, Wang L, Liu F, Liu H, Chen J et al. Enteropathogenic Escherichia coli Tir recruits cellular SHP-2 through ITIM motifs to suppress host immune response. Cell Signal 2013; 25: 1887–1894.

    Article  CAS  Google Scholar 

  19. Yan D, Wang X, Luo L, Cao X, Ge B . Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs. Nat Immunol 2012; 13: 1063–1071.

    Article  CAS  Google Scholar 

  20. Wang Y, Tang Y, Teng L, Wu Y, Zhao X, Pei G . Association of β-arrestin and TRAF6 negatively regulates Toll-like receptor–interleukin 1 receptor signaling. Nat Immunol 2005; 7: 139–147.

    Article  Google Scholar 

  21. Yu M, Su L, Zou L, Liu Y, Wu N, Kong L et al. An essential function for β-arrestin 2 in the inhibitory signaling of natural killer cells. Nat Immunol 2008; 9: 898–907.

    Article  CAS  Google Scholar 

  22. Gao X, Wang X, Pham TH, Feuerbacher LA, Lubos M, Huang M et al. NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-κB activation. Cell Host Microbe 2013; 13: 87–89.

    Article  CAS  Google Scholar 

  23. Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 2013; 501: 247.

    Article  CAS  Google Scholar 

  24. Newton HJ, Pearson JS, Badea L, Kelly M, Lucas M, Holloway G et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappa B p65. PLoS Pathog 2010; 6: e1000898.

    Article  Google Scholar 

  25. Nadler C, Baruch K, Kobi S, Mills E, Haviv G, Farago M et al. The type III secretion effector NleE inhibits NF-kappa B activation. PLoS Pathog 2010; 6: e1000743.

    Article  Google Scholar 

  26. Zhang L, Ding X, Cui J, Xu H, Chen J, Gong YN et al. Cysteine methylation disrupts ubiquitin-chain sensing in NF-kappa B activation. Nature 2012; 481: 204.

    Article  CAS  Google Scholar 

  27. Vossenkämper A, Marchés O, Fairclough PD, Warnes G, Stagg AJ, Lindsay JO et al. Inhibition of NF-kappa B signaling in human dendritic cells by the enteropathogenic Escherichia coli effector protein NleE. J Immunol 2010; 185: 4118–4127.

    Article  Google Scholar 

  28. Yen H, Ooka T, Iguchi A, Hayashi T, Sugimoto N, Tobe T et al. NleC, a type III secretion protease, compromises NF-κB activation by targeting p65/RelA. PLoS Pathog 2010; 6: 1001231.

    Article  Google Scholar 

  29. Pearson JS, Riedmaier P, Marches O, Frankel G, Hartland EL . A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-kappa B for degradation. Mol Microbiol 2011; 80: 219–230.

    Article  CAS  Google Scholar 

  30. Muehlen S, Ruchaud-Sparagano M, Kenny B . Proteasome-independent degradation of canonical NF kappa B complex components by the NleC protein of pathogenic Escherichia coli. J Biol Chem 2011; 286: 5100–5107.

    Article  CAS  Google Scholar 

  31. Giogha C, Lung TWF, Muehlen S, Pearson JS, Hartland EL . Substrate recognition by the zinc metalloprotease effector NleC from enteropathogenic Escherichia coli. Cell Microbiol 2015; 17: 1766–1778.

    Article  CAS  Google Scholar 

  32. Hodgson A, Wier EM, Fu K, Sun X, Yu H, Zheng W et al. Metalloprotease NleC suppresses host NF-kappa B/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog 2015; 11: e1004705.

    Article  Google Scholar 

  33. Shames SR, Bhavsar AP, Croxen MA, Law RJ, Mak SHC, Deng W et al. The pathogenic Escherichia coli type III secreted protease NleC degrades the host acetyltransferase p300. Cell Microbiol 2011; 13: 1542–1557.

    Article  CAS  Google Scholar 

  34. Wan F, Anderson DE, Barnitz RA, Snow A, Bidere N, Zheng L et al. Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell 2007; 131: 927–939.

    Article  CAS  Google Scholar 

  35. Gao XF, Wan FY, Mateo K, Callegari E, Wang D, Deng W et al. Bacterial effector binding to ribosomal protein S3 subverts NF-kappa B function. PLoS Pathog 2009; 5: e1000708.

    Article  Google Scholar 

  36. Wan F, Weaver A, Gao X, Bern M, Hardwidge PR, Lenardo MJ et al. IKK beta phosphorylation regulates RPS3 nuclear translocation and NF-kappa B function during infection with Escherichia coli strain O157:H7. Nat Immunol 2011; 12: 119–335.

    Article  Google Scholar 

  37. Pham TH, Gao X, Singh G, Hardwidge PR . Escherichia coli virulence protein NleH1 interaction with the v-Crk sarcoma virus CT10 oncogene-like protein (CRKL) governs NleH1 inhibition of the ribosomal protein 53 (RPS3)/nuclear factor kappa B (NF-kappa B) pathway. J Biol Chem 2013; 288: 34567–34574.

    Article  CAS  Google Scholar 

  38. Pham TH, Gao X, Tsai K, Olsen R, Wan F, Hardwidge PR et al. Functional differences and interactions between the Escherichia coli type III secretion system effectors NleH1 and NleH2. Infect Immun 2012; 80: 2133–2140.

    Article  CAS  Google Scholar 

  39. Holmes A, Arlehamn C, Wang D, Mitchell TJ, Evans TJ, Roe AJ et al. Expression and regulation of the Escherichia coli O157:H7 Effector Proteins NleH1 and NleH2. PLoS One 2012; 7: e33408.

    Article  CAS  Google Scholar 

  40. Smith K, Humphreys D, Hume PJ, Koronakis V . Enteropathogenic Escherichia coli recruits the cellular inositol phosphatase SHIP2 to regulate actin-pedestal formation. Cell Host Microbe 2010; 7: 13–24.

    Article  CAS  Google Scholar 

  41. Phillips N, Hayward RD, Koronakis V . Phosphorylation of the enteropathogenic E-coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nat Cell Biol 2004; 6: 618–625.

    Article  CAS  Google Scholar 

  42. Sason H, Milgrom M, Weiss AM, Melamed-Book N, Balla T, Grinstein S et al. Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection. Mol Biol Cell 2009; 20: 544–555.

    Article  CAS  Google Scholar 

  43. Roxas JL, Koutsouris A, Viswanathan VK . Enteropathogenic Eschetichia coli-induced epidermal growth factor receptor activation contributes to physiological alterations in intestinal epithelial cells. Infect Immun 2007; 75: 2316–2324.

    Article  CAS  Google Scholar 

  44. Reddy S, Huang J, Liao W . Phosphatidylinositol 3-kinase as a mediator of TNF-induced NF-B kappa activation. J Immunol 2000; 164: 1355–1363.

    Article  CAS  Google Scholar 

  45. Campellone KG, Leong JM . Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol Microbiol 2005; 56: 416–432.

    Article  CAS  Google Scholar 

  46. Hazeki K, Nigorikawa K, Hazeki O . Role of phosphoinositide 3-kinase in innate immunity. Biol Pharm Bull 2007; 30: 1617–1623.

    Article  CAS  Google Scholar 

  47. Ruchaud-Sparagano MH, Maresca M, Kenny B . Enteropathogenic Escherichia coli (EPEC) inactivate innate immune responses prior to compromising epithelial barrier function. Cell Microbiol 2007; 9: 1909–1921.

    Article  CAS  Google Scholar 

  48. Yen H, Sugimoto N, Tobe T . Enteropathogenic Escherichia coli uses NleA to inhibit NLRP3 inflammasome activation. PLoS Pathog 2015; 11: e1005121.

    Article  Google Scholar 

  49. Wen H, Miao EA, Ting JPY . Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 2013; 39: 432–441.

    Article  CAS  Google Scholar 

  50. Jo EK, Kim JK, Shin DM, Sasakawa C . Molecular mechanisms regulating NLRP3 inflammasome activation. 2016 pp 13: 148–159.

  51. Bednash JS, Mallampalli RK . Regulation of inflammasomes by ubiquitination. Cell Mol Immunol 2016 e-pub ahead of print 11 April 2016 doi:10.1038/cmi.2016.15.

    Article  CAS  Google Scholar 

  52. Thanabalasuriar A, Bergeron J, Gillingham A, Mimee M, Thomassin JL, Strynadka N et al. Sec24 interaction is essential for localization and virulence-associated function of the bacterial effector protein NleA. Cell Microbiol 2012; 14: 1206–1218.

    Article  CAS  Google Scholar 

  53. Lerner AG, Upton JP, Praveen P, Ghosh R, Nakagawa Y, Igbaria A et al. IRE1 alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 2012; 16: 250–264.

    Article  CAS  Google Scholar 

  54. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  Google Scholar 

  55. Kawai T, Akira S . TLR signaling. Sem Immunol 2007; 19: 24–32.

    Article  CAS  Google Scholar 

  56. Shaulian E, Karin M . AP-1 in cell proliferation and survival. Oncogene 2001; 20: 2390–2400.

    Article  CAS  Google Scholar 

  57. Ruchaud-Sparagano M, Maresca M, Kenny B . Enteropathogenic Escherichia coli (EPEC) inactivate innate immune responses prior to compromising epithelial barrier function. Cell Microbiol 2007; 9: 1909–1921.

    Article  CAS  Google Scholar 

  58. Kang YJ, Otsuka M, van den Berg A, Hong L, Huang Z, Wu X et al. Epithelial p38alpha controls immune cell recruitment in the colonic mucosa. PLoS Pathog 2010; 6: e1000934.

    Article  Google Scholar 

  59. Scholz R, Imami K, Scott NE, Trimble WS, Foster LJ, Finlay BB et al. Novel host proteins and signaling pathways in enteropathogenic E. coli pathogenesis identified by global phosphoproteome analysis. Mol Cell Proteomics 2015; 14: 1927–1945.

    Article  CAS  Google Scholar 

  60. Baruch K, Gur-Arie L, Nadler C, Koby S, Yerushalmi G, Ben-Neriah Y et al. Metalloprotease type III effectors that specifically cleave JNK and NF-kappa B. EMBO J 2011; 30: 221–231.

    Article  CAS  Google Scholar 

  61. Sham HP, Shames SR, Croxen MA, Ma C, Chan JM, Khan MA et al. Attaching and effacing bacterial effector NleC suppresses epithelial inflammatory responses by inhibiting NF- B and p38 mitogen-activated protein kinase activation. Infect Immun 2011; 79: 3552–3562.

    Article  CAS  Google Scholar 

  62. Dahan S, Busuttil VB, Imbert V, Peyron JF, Rampal P, Czerucka D et al. Enterohemorrhagic Escherichia coli infection induces interleukin-8 production via activation of mitogen-activated protein kinases and the transcription factors NF-kappa B and AP-1 in T84 cells. Infect Immun 2002; 70: 2304–2310.

    Article  CAS  Google Scholar 

  63. Kim HD, Lee JY, Kim J . Erk phosphorylates threonine 42 residue of ribosomal protein S3. Biochem Biophys Res Commun 2005; 333: 110–115.

    Article  CAS  Google Scholar 

  64. Shim JH, Xiao CC, Paschal AE, Bailey ST, Rao P, Hayden MS et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 2005; 19: 2668–2681.

    Article  CAS  Google Scholar 

  65. Chen I, Hsu P, Hsu W, Chen N, Tseng P . Polyubiquitination of transforming growth factor β-activated kinase 1 (TAK1) at lysine 562 residue regulates TLR4-mediated JNK and p38 MAPK activation. Sci Rep 2015; 5: 12300.

    Article  CAS  Google Scholar 

  66. Tseng P, Matsuzawa A, Zhang W, Mino T, Vignali DAA, Karin M et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 2010; 11: 70–1819.

    Article  CAS  Google Scholar 

  67. Blasche S, Arens S, Ceol A, Siszler G, Schmidt MA, Häuser R et al. The EHEC-host interactome reveals novel targets for the translocated intimin receptor. Sci Rep 2014; 4: 7531.

    Article  CAS  Google Scholar 

  68. Braunewell K, Klein-Szanto AJ . Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+-sensor proteins. Cell Tissue Res 2009; 335: 301–316.

    Article  CAS  Google Scholar 

  69. Tibbles LA, Woodgett JR . The stress-activated protein kinase pathways. Cell Mol Life Sci 1999; 55: 1230–1254.

    Article  CAS  Google Scholar 

  70. Kobayashi M, Masaki T, Hori K, Masuo Y, Miyamoto M, Tsubokawa H et al. Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory. Neuroscience 2005; 133: 471–484.

    Article  CAS  Google Scholar 

  71. Chandrakesan P, Ahmed I, Anwar T, Wang Y, Sarkar S, Singh P et al. Novel changes in NF- B activity during progression and regression phases of hyperplasia: role of MEK, ERK, and p38. J Biol Chem 2010; 285: 33485–33498.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Shanghai Pujiang Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dapeng Yan or Baoxue Ge.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, X., Chen, Z., He, C. et al. Modulation of host signaling in the inflammatory response by enteropathogenic Escherichia coli virulence proteins. Cell Mol Immunol 14, 237–244 (2017). https://doi.org/10.1038/cmi.2016.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.52

This article is cited by

Search

Quick links