Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Arterial thrombosis in the context of HCV-associated vascular disease can be prevented by protein C

Abstract

Hepatitis C virus (HCV) infection is a major problem worldwide. HCV is not limited to liver disease but is frequently complicated by immune-mediated extrahepatic manifestations such as glomerulonephritis or vasculitis. A fatal complication of HCV-associated vascular disease is thrombosis. Polyriboinosinic:polyribocytidylic acid (poly (I:C)), a synthetic analog of viral RNA, induces a Toll-like receptor 3 (TLR3)-dependent arteriolar thrombosis without significant thrombus formation in venules in vivo. These procoagulant effects are caused by increased endothelial synthesis of tissue factor and PAI-1 without platelet activation. In addition to human umbilical endothelial cells (HUVEC), human mesangial cells (HMC) produce procoagulatory factors, cytokines and adhesion molecules after stimulation with poly (I:C) or HCV-containing cryoprecipitates from a patient with a HCV infection as well. Activated protein C (APC) is able to prevent the induction of procoagulatory factors in HUVEC and HMC in vitro and blocks the effects of poly (I:C) and HCV-RNA on the expression of cytokines and adhesion molecules in HMC but not in HUVEC. In vivo, protein C inhibits poly (I:C)-induced arteriolar thrombosis. Thus, endothelial cells are de facto able to actively participate in immune-mediated vascular thrombosis caused by viral infections. Finally, we provide evidence for the ability of protein C to inhibit TLR3-mediated arteriolar thrombosis caused by HCV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Poynard T, Yuen MF, Ratziu V, Lai CL . Viral hepatitis C. Lancet 2003; 362: 2095–2100.

    Article  CAS  Google Scholar 

  2. Perico N, Cattaneo D, Bikbov B, Remuzzi G . Hepatitis C infection and chronic renal diseases. Clin J Am Soc Nephrol 2009; 4: 207–220.

    Article  CAS  Google Scholar 

  3. Agnello V, Chung RT, Kaplan LM . A role for hepatitis C virus infection in type II cryoglobulinemia. N Engl J Med 1992; 327: 1490–1495.

    Article  CAS  Google Scholar 

  4. Ferri C, Greco F, Longombardo G, Palla P, Moretti A, Marzo E et al. Antibodies to hepatitis C virus in patients with mixed cryoglobulinemia. Arthritis Rheum 1991; 34: 1606–1610.

    Article  CAS  Google Scholar 

  5. Cacoub P, Fabiani FL, Musset L, Perrin M, Frangeul L, Leger JM et al. Mixed cryoglobulinemia and hepatitis C virus. Am J Med 1994; 96: 124–132.

    Article  CAS  Google Scholar 

  6. Vassilopoulos D, Calabrese LH . Hepatitis C virus infection and vasculitis: implications of antiviral and immunosuppressive therapies. Arthritis Rheum 2002; 46: 585–597.

    Article  Google Scholar 

  7. van Gorp EC, Suharti C, ten Cate H, Dolmans WM, van der Meer JW, ten Cate JW et al. Review: infectious diseases and coagulation disorders. J Infect Dis 1999; 180: 176–186.

    Article  CAS  Google Scholar 

  8. Akira S, Takeda K, Kaisho T . Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675–680.

    Article  CAS  Google Scholar 

  9. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . Recognition of double-stranded RNA and activation of NF-κB by toll-like receptor 3. Nature 2001; 413: 732–738.

    Article  CAS  Google Scholar 

  10. Pircher J, Merkle M, Wörnle M, Ribeiro A, Czermak T, Stampnik Y et al. Prothrombotic effects of tumor necrosis factor alpha in vivo are amplified by the absence of TNF-alpha receptor subtype 1 and require TNF-alpha receptor subtype 2. Arthritis Res Ther 2012; 14: R225.

    Article  CAS  Google Scholar 

  11. Mannell H, Pircher J, Chaudhry DI, Alig SK, Koch EG, Mettler R et al. ARNO regulates VEGF-dependent tissue responses by stabilizing endothelial VEGFR-2 surface expression. Cardiovasc Res 2012; 93: 111–119.

    Article  CAS  Google Scholar 

  12. Rumbaut RE, Slaff AR, Burns AR . Microvascular thrombosis models in venules and arterioles in vivo. Microcirculation 2005; 12: 259–274.

    Article  CAS  Google Scholar 

  13. Sohn HY, Krotz F, Gloe T, Keller M, Theisen K, Klauss V et al. Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine. Cardiovasc Res 2003; 58: 638–646.

    Article  CAS  Google Scholar 

  14. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 1992; 99: 683–690.

    Article  CAS  Google Scholar 

  15. Mannell H, Hellwig N, Gloe T, Plank C, Sohn HY, Groesser L et al. Inhibition of the tyrosine phosphatase SHP-2 suppresses angiogenesis in vitro and in vivo. J Vasc Res 2008; 45: 153–163.

    Article  CAS  Google Scholar 

  16. Wörnle M, Schmid H, Banas B, Merkle M, Henger A, Roeder M et al. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am J Pathol 2006; 168: 370–385.

    Article  Google Scholar 

  17. Merkle M, Ribeiro A, Wörnle M . TLR3 dependent regulation of cytokines in human mesangial cells: a novel role for IP-10 and TNFa in hepatitis C associated glomerulonephritis. Am J Physiol Renal Physiol 2011; 301: 57–69.

    Article  Google Scholar 

  18. Born G . Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927–929.

    Article  CAS  Google Scholar 

  19. Merkle M, Ribeiro A, Köppel S, Pircher J, Mannell H, Roeder M et al. TLR3-dependent immune regulatory functions of human mesangial cells. Cell Mol Immunol 2012; 9: 334–340.

    Article  CAS  Google Scholar 

  20. Pircher J, Czermak T, Merkle M, Mannell H, Krötz F, Ribeiro A et al. Hepatitis C virus induced endothelial inflammatory response depends on the functional expression of TNFα receptor subtype 2. PLoS One 2014; 9: e113351.

    Article  Google Scholar 

  21. Goeijenbier M, van Wissen M, van de Weg C, Jong E, Gerdes VE, Meijers JC et al. Review: viral infections and mechanisms of thrombosis and bleeding. J Med Virol 2012; 84: 1680–1696.

    Article  CAS  Google Scholar 

  22. Arnold R, König W . Respiratory syncytial virus infection of human lung endothelial cells enhances selectively intercellular adhesion molecule-1 expression. J Immunol 2005; 174: 7359–7367.

    Article  CAS  Google Scholar 

  23. Gavrilovskaya IN, Gorbunova EE, Mackow ER . Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J Virol 2010; 84: 4832–4839.

    Article  CAS  Google Scholar 

  24. Magro CM, Crowson AN, Dawood M, Nuovo GJ . Parvoviral infection of endothelial cells and its possible role in vasculitis and autoimmune disease. J Rheumatol 2000; 29: 1227–1235.

    Google Scholar 

  25. Mason A, Wick M, White H, Perrillo R . Hepatitis B virus replication in diverse cell types during chronic hepatitis B virus infection. Hepatology 1993; 18: 781–789.

    Article  CAS  Google Scholar 

  26. Poland SD, Rice GP, Dekaban GA . HIV-1 infection of human brain-derived microvascular endothelial cells in vitro. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8: 437–445.

    Article  CAS  Google Scholar 

  27. Squizzato A, Gerdes VE, Büller HR . Effects of human cytomegalovirus infection on the coagulation system. Thromb Haemost 2005; 93: 403–410.

    Article  CAS  Google Scholar 

  28. Visseren FL, Bouwman JJ, Bouter KP, Diepersloot RJ, de Groot PH, Erkelens DW . Procoagulant activity of endothelial cells after infection with respiratory viruses. Thromb Haemost 2000; 84: 319–324.

    Article  CAS  Google Scholar 

  29. Nicholson AC, Hajjar DP . Herpesviruses and thrombosis: activation of coagulation on the endothelium. Clin Chim Acta 1999; 286: 23–29.

    Article  CAS  Google Scholar 

  30. Nicholson AC, Hajjar DP . Herpesvirus in atherosclerosis and thrombosis: etiologic agents or ubiquitous bystanders? Arterioscler Thromb Vasc Biol 1998; 18: 339–348.

    Article  CAS  Google Scholar 

  31. Sutherland MR, Friedman HM, Pryzdial EL . Thrombin enhances herpes simplex virus infection of cells involving protease-activated receptor 1. J Thromb Haemost 2007; 5: 1055–1061.

    Article  CAS  Google Scholar 

  32. Lipinski S, Bremer L, Lammers T, Thieme F, Schreiber S, Rosenstiel P . Coagulation and inflammation. Molecular insights and diagnostic implications. Hamostaseologie 2011; 31: 94–102.

    Article  CAS  Google Scholar 

  33. Petäjä J . Inflammation and coagulation. An overview. Thromb Res 2011; 127: 34–37.

    Article  Google Scholar 

  34. Levi M, van der Poll T, Büller HR . Bidirectional relation between inflammation and coagulation. Circulation 2004; 109: 2698–2704.

    Article  Google Scholar 

  35. Opal SM . Interactions between coagulation and inflammation. Scand J Infect Dis 2003; 35: 545–554.

    Article  CAS  Google Scholar 

  36. Schouten M, Wiersinga WJ, Levi M, van der Poll T . Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 2008; 83: 536–545.

    Article  CAS  Google Scholar 

  37. Passos AM, Treitinger A, Spada C . An overview of the mechanisms of HIV-related thrombocytopenia. Acta Haematol 2010; 124: 13–18.

    Article  Google Scholar 

  38. Wörnle M, Roeder M, Sauter M, Merkle M, Ribeiro A . Effect of dsRNA on mesangial cell synthesis of plasminogen activator inhibitor type 1 and tissue plasminogen activator. Nephron Exp Nephrol 2009; 113: 57–65.

    Article  Google Scholar 

  39. Kincaid-Smith P . Coagulation and renal disease. Kidney Int 1972; 2: 183–190.

    Article  CAS  Google Scholar 

  40. Nield GH, Cameron JS . Primary glomerulonephritis. In: Remuzzi G, Rossi EC (eds). Haemostasis and the Kidney. Butterworth: London, UK. 1989 pp 56–64.

    Google Scholar 

  41. Nath KA . Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992; 20: 1–17.

    Article  CAS  Google Scholar 

  42. Grandaliano G, Gesualdo L, Ranieri E, Monno R, Schena FP . Tissue factor, plasminogen activator inhibitor-1, and thrombin receptor expression in human crescentic glomerulonephritis. Am J Kidney Dis 2000; 35: 726–738.

    Article  CAS  Google Scholar 

  43. Houston G, Cuthbertson BH . Activated protein C for the treatment of severe sepsis. Clin Microbiol Infect 2009; 15: 319–324.

    Article  CAS  Google Scholar 

  44. Abraham E, Laterre PF, Garg R, Levy H, Talwar D, Trzaskoma BL et al. Administration of drotrecogin alfa (activated) in early stage severe sepsis (ADDRESS) Study Group. N Engl J Med 2005; 353: 1332–1341.

    Article  CAS  Google Scholar 

  45. Bernard GR, Margolis BD, Shanies HM, Ely EW, Wheeler AP, Levy H et al. Extended evaluation of recombinant human activated protein C United States Trial (ENHANCE US): a single-arm, phase 3B, multicenter study of drotrecogin alfa (activated) in severe sepsis. Chest 2004; 125: 2206–2216.

    Article  CAS  Google Scholar 

  46. Gabre J, Chabasse C, Cao C, Mukhopadhyay S, Siefert S, Bi Y et al. Activated protein C accelerates venous thrombus resolution through heme oxygenase-1 induction. J Thromb Haemost 2014; 12: 93–102.

    Article  CAS  Google Scholar 

  47. Martí-Carvajal AJ, SolàI I, Lathyris D, Cardona AF . Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev 2012; 3: CD004388.

    Google Scholar 

  48. FDA Drug Safety Communication: Voluntary Market Withdrawal of Xigris [(Drotrecogin alfa (activated)] due to failure to show a survival benefit http://www.fda.gov/Drugs/DrugSafety/ucm277114.htm Accessed on 25 October 2011.

  49. Cao C, Gao Y, Li Y, Antalis TM, Castellino FJ, Zhang L . The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b. J Clin Invest 2010; 120: 1971–1980.

    Article  CAS  Google Scholar 

  50. Stephenson DA, Toltl LJ, Beaudin S, Liaw PC . Modulation of monocyte function by activated protein C, a natural anticoagulant. J Immunol 2006; 177: 2115–2122.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants WO 1716/1-1 from the Deutsche Forschungsgemeinschaft (DFG), a grant from the Else Kröner-Fresenius-Stiftung and the Wilhelm-Vaillant-Stiftung to MW and a grant from the Friedrich Baur Stiftung to JP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wörnle.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blüm, P., Pircher, J., Merkle, M. et al. Arterial thrombosis in the context of HCV-associated vascular disease can be prevented by protein C. Cell Mol Immunol 14, 986–996 (2017). https://doi.org/10.1038/cmi.2016.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.10

Keywords

This article is cited by

Search

Quick links