Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The modulation of co-stimulatory molecules by circulating exosomes in primary biliary cirrhosis

Abstract

Exosomes are nanoparticles of endocytic origin, secreted by a myriad of cell populations that are attracting increased attention by virtue of their ability to modulate cell-to-cell communications. They are also attracting attention in a variety of immunological issues, including autoimmunity and, in particular, their ability to regulate cytokine and chemokine activation. Primary biliary cirrhosis (PBC) is considered a model autoimmune disease, which has a highly focused cytotoxic response against biliary epithelial cells. We have isolated exosomes from plasma from 29 patients with PBC and 30 healthy controls (HCs), and studied the effect of these exosomes on co-stimulatory molecule expression and cytokine production in mononuclear cell populations using an ex vivo system. We also identified the microRNA (miRNA) populations in PBC compared to HC exosomes. We report herein that although exosomes do not change cytokine production, they do significantly alter co-stimulatory molecule expression on antigen-presenting populations. Further, we demonstrated that CD86 up-regulated expression on CD14+ monocytes, whereas CD40 up-regulated on CD11c+ dendritic cells by exosomes from patients with PBC. In addition, there were differences of miRNA expression of circulating exosomes in patients with PBC. These data have significant importance based on observations that co-stimulatory molecules play a differential role in the regulation of T-cell activation. Our observation indicated that aberrant exosomes from PBC selectively induce expression of co-stimulatory molecules in different subset of antigen-presenting cells. These alterations may involve in pathogenesis of autoimmune liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Théry C, Zitvogel L, Amigorena S . Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2: 569–579.

    Article  Google Scholar 

  2. Raposo G, Stoorvogel W . Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200: 373–383.

    Article  CAS  PubMed Central  Google Scholar 

  3. Théry C, Ostrowski M, Segura E . Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9: 581–593.

    Article  Google Scholar 

  4. Johnstone RM, Bianchini A, Teng K . Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 1989; 74: 1844–1851.

    CAS  PubMed  Google Scholar 

  5. Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol 2007; 179: 1969–1978.

    Article  CAS  Google Scholar 

  6. Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN . Salivary gland epithelial cell exosomes: a source of autoantigenic ribonucleoproteins. Arthritis Rheum 2005; 52: 1517–1521.

    Article  CAS  Google Scholar 

  7. Brouwer R, Vree Egberts WT, Hengstman GJ, Raijmakers R, van Engelen BG, Seelig HP et al. Autoantibodies directed to novel components of the PM/Scl complex, the human exosome. Arthritis Res 2002; 4: 134–138.

    Article  CAS  Google Scholar 

  8. Song J, Kim D, Han J, Kim Y, Lee M, Jin EJ . PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med 2015; 15: 121–126.

    Article  CAS  Google Scholar 

  9. Gershwin ME, Ansari AA, Mackay IR, Nakanuma Y, Nishio A, Rowley MJ, Coppel RL . Primary biliary cirrhosis: an orchestrated immune response against epithelial cells. Immunol Rev 2000; 174: 210–225.

    Article  CAS  Google Scholar 

  10. Kaplan MM, Gershwin ME . Primary biliary cirrhosis. N Engl J Med 2005; 353: 1261–1273.

    Article  CAS  Google Scholar 

  11. Gershwin ME, Mackay IR . The causes of primary biliary cirrhosis: convenient and inconvenient truths. Hepatology 2008; 47: 737–745.

    Article  Google Scholar 

  12. Lleo A, Maroni L, Glaser S, Alpini G, Marzioni M . Role of cholangiocytes in primary biliary cirrhosis. Semin Liver Dis 2014; 34: 273–284.

    Article  CAS  PubMed Central  Google Scholar 

  13. Wang L, Wang FS, Chang C, Gershwin ME . Breach of tolerance: primary biliary cirrhosis. Semin Liver Dis 2014; 34: 297–317.

    Article  Google Scholar 

  14. Dyson JK, Hirschfield GM, Adams DH, Beuers U, Mann DA, Lindor KD, Jones DE . Novel therapeutic targets in primary biliary cirrhosis. Nat Rev Gastroenterol Hepatol 2015; 12: 147–158.

    Article  CAS  Google Scholar 

  15. Wang J, Budamagunta MS, Voss JC, Kurth MJ, Lam KS, Lu L et al. Antimitochondrial antibody recognition and structural integrity of the inner lipoyl domain of the E2 subunit of pyruvate dehydrogenase complex. J Immunol 2013; 191: 2126–2133.

    Article  CAS  PubMed Central  Google Scholar 

  16. Kita H, Matsumura S, He XS, Ansari AA, Lian ZX, Van de Water J et al. Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 2002; 109: 1231–1240.

    Article  CAS  PubMed Central  Google Scholar 

  17. Kita H, Lian ZX, Van de Water J, He XS, Matsumura S, Kaplan M et al. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 2002; 195: 113–123.

    Article  CAS  PubMed Central  Google Scholar 

  18. Wang L, Sun Y, Zhang Z, Jia Y, Zou Z, Ding J et al. CXCR5(+) CD4(+) T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis. Hepatology 2015; 61: 627–638.

    Article  CAS  PubMed Central  Google Scholar 

  19. Zhang J, Zhang W, Leung PS, Bowlus CL, Dhaliwal S, Coppel RL et al. Ongoing activation of autoantigen-specific B cells in primary biliary cirrhosis. Hepatology 2014; 60: 1708–1716.

    Article  CAS  PubMed Central  Google Scholar 

  20. Shimoda S, Tsuneyama K, Kikuchi K, Harada K, Nakanuma Y, Nakamura M et al. The role of natural killer (NK) and NK T cells in the loss of tolerance in murine primary biliary cirrhosis. Clin Exp Immunol 2012; 168: 279–284.

    Article  CAS  PubMed Central  Google Scholar 

  21. Wang J, Yang GX, Tsuneyama K, Gershwin ME, Ridgway WM, Leung PS . Animal models of primary biliary cirrhosis. Semin Liver Dis 2014; 34: 285–296.

    Article  CAS  Google Scholar 

  22. Wang JJ, Yang GX, Zhang WC, Lu L, Tsuneyama K, Kronenberg M et al. Escherichia coli infection induces autoimmune cholangitis and anti-mitochondrial antibodies in non-obese diabetic (NOD).B6 (Idd10/Idd18) mice. Clin Exp Immunol 2014; 175: 192–201.

    Article  CAS  PubMed Central  Google Scholar 

  23. Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 2010; 52: 987–998.

    Article  CAS  PubMed Central  Google Scholar 

  24. Sasatomi K, Noguchi K, Sakisaka S, Sata M, Tanikawa K . Abnormal accumulation of endotoxin in biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. J Hepatol 1998; 29: 409–416.

    Article  CAS  Google Scholar 

  25. Lleo A, Zhang W, McDonald WH, Seeley EH, Leung PS, Coppel RL et al. Shotgun proteomics: identification of unique protein profiles of apoptotic bodies from biliary epithelial cells. Hepatology 2014; 60: 1314–1323.

    Article  CAS  PubMed Central  Google Scholar 

  26. Rong G, Zhong R, Lleo A, Leung PS, Bowlus CL, Yang GX et al. Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. Hepatology 2011; 54: 196–203.

    Article  CAS  PubMed Central  Google Scholar 

  27. Kurth MJ, Yokoi T, Gershwin ME . Halothane-induced hepatitis: paradigm or paradox for drug-induced liver injury. Hepatology 2014; 60: 1473–1475.

    Article  CAS  PubMed Central  Google Scholar 

  28. Wang YH, Yang W, Yang JB, Jia YJ, Tang W, Gershwin ME et al. Systems biologic analysis of T regulatory cells genetic pathways in murine primary biliary cirrhosis. J Autoimmun 2015; 59: 26–37.

    Article  CAS  PubMed Central  Google Scholar 

  29. Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 2014; 59: 1944–1953.

    Article  CAS  PubMed Central  Google Scholar 

  30. Yao Y, Yang W, Yang YQ, Ma HD, Lu FT, Li L et al. Distinct from its canonical effects, deletion of IL-12p40 induces cholangitis and fibrosis in interleukin-2Rα(-/-) mice. J Autoimmun 2014; 51: 99–108.

    Article  CAS  Google Scholar 

  31. Lindor KD, Gershwin ME, Poupon R, Kaplan M, Bergasa NV, Heathcote EJ, American Association for Study of Liver Diseases. Primary biliary cirrhosis. Hepatology 2009; 50: 291–308.

    Article  Google Scholar 

  32. Chapman R, Fevery J, Kalloo A, Nagorney DM, Boberg KM, Shneider B et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology 2010; 51: 660–678.

    Article  CAS  Google Scholar 

  33. Rong GH, Yang GX, Ando Y, Zhang W, He XS, Leung PS et al. Human intrahepatic biliary epithelial cells engulf blebs from their apoptotic peers. Clin Exp Immunol 2013; 172: 95–103.

    Article  CAS  PubMed Central  Google Scholar 

  34. Schorey JS, Cheng Y, Singh PP, Smith VL . Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2015; 16: 24–43.

    Article  CAS  Google Scholar 

  35. Viaud S, Terme M, Flament C, Taieb J, André F, Novault S et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 2009; 4: e4942.

    Article  PubMed Central  Google Scholar 

  36. Li X, Li JJ, Yang JY, Wang DS, Zhao W, Song WJ et al.Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PLoS One 2012; 7: e44045.

    Article  CAS  PubMed Central  Google Scholar 

  37. Miksa M, Wu R, Dong W, Komura H, Amin D, Ji Y et al. Immature dendritic cell-derived exosomes rescue septic animals via milk fat globule epidermal growth factor-factor VIII [corrected]. J Immunol 2009; 183: 5983–5990.

    Article  CAS  PubMed Central  Google Scholar 

  38. Rahman MJ, Regn D, Bashratyan R, Dai YD . Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes 2014; 63: 1008–1020.

    Article  CAS  PubMed Central  Google Scholar 

  39. Yin W, Ouyang S, Li Y, Xiao B, Yang H . Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation 2013; 36: 232–240.

    Article  CAS  Google Scholar 

  40. Lenschow DJ, Walunas TL, Bluestone JA . CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996; 14: 233–258.

    Article  CAS  Google Scholar 

  41. Dilioglou S, Cruse JM, Lewis RE . Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells. Exp Mol Pathol 2003; 75: 217–227.

    Article  CAS  Google Scholar 

  42. Vasilevko V, Ghochikyan A, Holterman MJ, Agadjanyan MG . CD80 (B7-1) and CD86 (B7-2) are functionally equivalent in the initiation and maintenance of CD4+ T-cell proliferation after activation with suboptimal doses of PHA. DNA Cell Biol 2002; 21: 137–149.

    Article  CAS  Google Scholar 

  43. Zhang P, Lewis JP, Michalek SM, Katz J . Role of CD80 and CD86 in host immune responses to the recombinant hemagglutinin domain of Porphyromonas gingivalis gingipain and in the adjuvanticity of cholera toxin B and monophosphoryl lipid A. Vaccine 2007; 25: 6201–6210.

    Article  CAS  PubMed Central  Google Scholar 

  44. Suvas S, Singh V, Sahdev S, Vohra H, Agrewala JN . Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem 2002; 277: 7766–7775.

    Article  CAS  Google Scholar 

  45. Fleischer J, Soeth E, Reiling N, Grage-Griebenow E, Flad HD, Ernst M . Differential expression and function of CD80 (B7-1) and CD86 (B7-2) on human peripheral blood monocytes. Immunology 1996; 89: 592–598.

    Article  CAS  PubMed Central  Google Scholar 

  46. Segura E, Nicco C, Lombard B, Véron P, Raposo G, Batteux F et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005; 106: 216–223.

    Article  CAS  Google Scholar 

  47. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic 2010; 11: 675–687.

    Article  CAS  PubMed Central  Google Scholar 

  48. Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 2011; 124: 447–458.

    Article  CAS  Google Scholar 

  49. Dunand-Sauthier I, Santiago-Raber ML, Capponi L, Vejnar CE, Schaad O, Irla M et al. Silencing of c-Fos expression by micro RNA-155 is critical for dendritic cell maturation and function. Blood 2011; 117: 4490–4500.

    Article  CAS  Google Scholar 

  50. Willart MA, van Nimwegen M, Grefhorst A, Hammad H, Moons L, Hoogsteden HC et al. Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor. Allergy 2012; 67: 1501–1510.

    CAS  PubMed  Google Scholar 

  51. Sombetzki M, Fuchs CD, Fickert P, Osterreicher CH, Mueller M, Claudel T et al. 24-nor-ursodeoxycholic acid ameliorates inflammatory response and liver fibrosis in a murine model of hepatic schistosomiasis. J Hepatol 2015; 62: 871–878.

    Article  CAS  PubMed Central  Google Scholar 

  52. Witek RP, Yang L, Liu R, Jung Y, Omenetti A, Syn WK et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology 2009; 136: 320–330.

    Article  CAS  Google Scholar 

  53. Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TV et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol 2010; 299: G990–999.

    Article  CAS  PubMed Central  Google Scholar 

  54. Turner ML, Schnorfeil FM, Brocker T . MicroRNAs regulate dendritic cell differentiation and function. J Immunol 2011; 187: 3911–3917.

    Article  CAS  Google Scholar 

  55. Reis e Sousa C . Dendritic cells in a mature age. Nat Rev Immunol 2006; 6: 476–483.

    Article  CAS  Google Scholar 

  56. Rosenberger CM, Podyminogin RL, Navarro G, Zhao GW, Askovich PS, Weiss MJ, Aderem A . miR-451 regulates dendritic cell cytokine responses to influenza infection. J Immunol 2012; 189: 5965–5975.

    Article  CAS  PubMed Central  Google Scholar 

  57. Smigielska-Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J et al. Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun 2014; 15: 115–125.

    Article  CAS  PubMed Central  Google Scholar 

  58. Sato K, Yoshimura A, Kaneko T, Ukai T, Ozaki Y, Nakamura H et al. A single nucleotide polymorphism in 3′-untranslated region contributes to the regulation of toll-like receptor 4 translation. J Biol Chem 2012; 287: 25163–25172.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Nikki Phipps for support in preparing this article. We also thank Mr. Sandeep Dhaliwal in preparing the blood samples. Financial support provided by National Institutes of Health grant, DK39588 (M. Eric Gershwin).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianjin Lu or M Eric Gershwin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomiyama, T., Yang, GX., Zhao, M. et al. The modulation of co-stimulatory molecules by circulating exosomes in primary biliary cirrhosis. Cell Mol Immunol 14, 276–284 (2017). https://doi.org/10.1038/cmi.2015.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.86

Keywords

This article is cited by

Search

Quick links