Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Ovarian autoimmune disease: clinical concepts and animal models

Abstract

The ovary is not an immunologically privileged organ, but a breakdown in tolerogenic mechanisms for ovary-specific antigens has disastrous consequences on fertility in women, and this is replicated in murine models of autoimmune disease. Isolated ovarian autoimmune disease is rare in women, likely due to the severity of the disease and the inability to transmit genetic information conferring the ovarian disease across generations. Nonetheless, autoimmune oophoritis is often observed in association with other autoimmune diseases, particularly autoimmune adrenal disease, and takes a toll on both society and individual health. Studies in mice have revealed at least two mechanisms that protect the ovary from autoimmune attack. These mechanisms include control of autoreactive T cells by thymus-derived regulatory T cells, as well as a role for the autoimmune regulator (AIRE), a transcriptional regulator that induces expression of tissue-restricted antigens in medullary thymic epithelial cells during development of T cells. Although the latter mechanism is incompletely defined, it is well established that failure of either results in autoimmune-mediated targeting and depletion of ovarian follicles. In this review, we will address the clinical features and consequences of autoimmune-mediated ovarian infertility in women, as well as the possible mechanisms of disease as revealed by animal models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 2
Figure 3
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA . National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med 2012; 9: e1001356.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Forti G, Krausz C . Evaluation and treatment of the infertile couple. J Clin Endocrinol Metab 1998; 83: 4177–4188.

    CAS  PubMed  Google Scholar 

  3. Chandra A, Copen CE . Infertility and impaired fecundity in the United States, 1982–2010: data from the National Survey of Family Growth. Natl Health Stat Rep 2013; 67: 1–19.

    Google Scholar 

  4. Braxton J, Carey D, Davis D, Footman A, Flagg E, Grier L et al. Sexually Transmitted Disease Surveillance 2012. Atlanta, GA: Department of Health and Human Services: National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, 2013.

    Google Scholar 

  5. Brison DR, Roberts SA, Kimber SJ . How should we assess the safety of IVF technologies? Reprod Biomed Online 2013; 27: 710–721.

    Article  PubMed  Google Scholar 

  6. Acosta AA, Anand Kumar TC, Andino N, Cooke ID, DeCherney AH, Qin-Sheng G et al. Recent Advances in Medically Assisted Conception. Geneva: World Health Organization, 1992.

    Google Scholar 

  7. Welt C . Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol 2008; 68: 499–509.

    Article  Google Scholar 

  8. Coulam CB, Adamson SC, Annegers JF . Incidence of premature ovarian failure. Obstet Gynecol 1986; 76: 604–606.

    Google Scholar 

  9. van Kasteren Y, Schoemaker J . Premature ovarian failure: a systematic review on therapeutic interventions to restore ovarian function and achieve pregnancy. Hum Reprod Update 1999; 5: 483–492.

    Article  CAS  PubMed  Google Scholar 

  10. Farhi J, Homburg R, Ferber A, Orvieto R, Ben Rafael Z . Non-response to ovarian stimulation in normogonadotrophic, normogonadal women: a clinical sign of impending onset of ovarian failure pre-empting the rise in basal follicle stimulating hormone levels. Hum Reprod 1997; 12: 241–243.

    Article  CAS  PubMed  Google Scholar 

  11. Nikolaou D, Lavery S, Turner C, Margara R, Trew G . Is there a link between an extremely poor response to ovarian hyperstimulation and early ovarian failure? Hum Reprod 2002; 17: 1106–1111.

    Article  CAS  PubMed  Google Scholar 

  12. Valdez KE, Petroff BK . Potential roles of the aryl hydrocarbon receptor in female reproductive senescence. Reprod Biol 2004; 4: 243–258.

    PubMed  Google Scholar 

  13. Bagur AC, Mautalen CA . Risk of developing osteoporosis in untreated premature menopause. Calcif Tissue Int 1992; 51: 4–12.

    Article  CAS  PubMed  Google Scholar 

  14. Kritz-Silverstein D, Barret-Connor E . Early menopause, number of reproductive years and bone mineral density in postmenopausal women. Am J Public Health 1993; 83: 983–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women. J Am Med Assoc 2002; 288: 321–333.

    Article  CAS  Google Scholar 

  16. Silbergeld ED, Flaws JA . Chemicals and menopause: effects on age at menopause and on health status in the postmenopausal period. J Women's Health 1999; 8: 227–234.

    Article  CAS  Google Scholar 

  17. Kalantaridou SN, Braddock DT, Patronas NJ, Nelson LM . Treatment of autoimmune premature ovarian failure: case report. Hum Reprod 1999; 14: 1777–1782.

    Article  CAS  PubMed  Google Scholar 

  18. Silva CA, Yamakami LY, Aikawa NE, Araujo DB, Carvalho JF, Bonfa E . Autoimmune primary ovarian insufficiency. Autoimmun Rev 2014; 13: 427–430.

    Article  CAS  PubMed  Google Scholar 

  19. Bannatyne P, Russell P, Shearman RP . Autoimmune oophoritis: a clinicopathologic assessment of 12 cases. Int J Gynecol Pathol 1990; 9: 191–207.

    Article  CAS  PubMed  Google Scholar 

  20. Sedmak DD, Hart WR, Tubbs RR . Autoimmune oophoritis: a histopathologic study of involved ovaries with immunologic characterization of the mononuclear cell infiltrate. Int J Gynecol Pathol 1987; 6: 73–81.

    Article  CAS  PubMed  Google Scholar 

  21. Bakalov VK, Anasti JN, Calis KA, Vanderhoof VH, Premkumar A, Chen S et al. Autoimmune oophoritis as a mechanism of follicular dysfunction in women with 46,XX spontaneous premature ovarian failure. Fertil Steril 2005; 84: 958–965.

    Article  PubMed  Google Scholar 

  22. Brandao Neto RA, de Carvalho JF . Diagnosis and classification of Addison's disease (autoimmune adrenalitis). Autoimmun Rev 2014; 13: 408–411.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson JR, Goudie RB, Gray KG, Timbury GC . Autoantibodies in Addison's disease. Lancet 1957; 1: 1123–1124.

    Article  Google Scholar 

  24. Winqvist O, Karlsson FA, Kämpe O . 21-hydroxylase, a major autoantigen in idiopathic Addison's disease. Lancet 1992; 339: 1559–1562.

    Article  CAS  PubMed  Google Scholar 

  25. Chen S, Sawika J, Betterle C, Powell M, Prentice L, Volpato M et al. Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison's disease, and premature ovarian failure. J Clin Endocrinol Metab 1996; 81: 1871–1876.

    CAS  PubMed  Google Scholar 

  26. Falorni A, Laureti S, Candeloro P, Perrino S, Coronella C, Bizzarro A et al. Steroid-cell autoantibodies are preferentially expressed in women with premature ovarian failure who have adrenal autoimmunity. Fertil Steril 2002; 78: 270–279.

    Article  PubMed  Google Scholar 

  27. Dal Pra C, Chen S, Furmaniak J, Smith B, Pedini B, Moscon A et al. Autoantibodies to steroidogenic enzymes in patients with premature ovarian failure with and without Addison's disease. Eur J Endocrinol 2003; 148: 565–570.

    Article  CAS  PubMed  Google Scholar 

  28. Arif S, Varela-Clvino R, Conway GS, Peakman M . 3β hydroxysteroid dehydrogenase autoantibodies in patients with idiopathic premature ovarian failure target N- and C-terminal epitopes. J Clin Endocrinol Metab 2001; 86: 5892–5897.

    CAS  PubMed  Google Scholar 

  29. Arif S, Vallian S, Farzaneh F, Zanone MM, James SL, Pietropaolo M et al. Identification of 3 beta-hydroxysteroid dehydrogenase as a novel target of steroid cell autoantibodies: association of autoantibodies with endocrine autoimmune disease. J Clin Endocrinol Metab 1996; 81: 4439–4445.

    CAS  PubMed  Google Scholar 

  30. Lonsdale RN, Roberts PF, Trowell JE . Autoimmune oophoritis associated with polycystic ovaries. Histopathology 1991; 19: 77–81.

    Article  CAS  PubMed  Google Scholar 

  31. Welt C, Falorni A, Taylor A, Martin K, Hall J . Selective theca cell dysfunction in autoimmune oophoritis results in multifollicular development, decreased estradiol, and elevated inhibin B levels. J Clin Endocrinol Metab 2005; 90: 3069–3076.

    Article  CAS  PubMed  Google Scholar 

  32. Hoek A, Schoemaker J, Drexhage HA . Premature ovarian failure and ovarian autoimmunity. Endocr Rev 1997; 18: 107–134.

    CAS  PubMed  Google Scholar 

  33. Gloor E, Hurlimann J . Autoimmune oophoritis. Am J Clin Pathol 1984; 81: 105–109.

    Article  CAS  PubMed  Google Scholar 

  34. La Marca A, Brozzetti A, Giovanna S, Stefania M, Annibale V, Alberto F . Primary ovarian insufficiency: autoimmune causes. Curr Opin Obstet Gynecol 2010; 22: 277–282.

    Article  PubMed  Google Scholar 

  35. Tsigkou A, Marzotti S, Borges L, Brozzetti A, Reis F, Candeloro P et al. High serum inhibin concentration discriminates autoimmune oophoritis from other forms of primary ovarian insufficiency. J Clin Endocrinol Metab 2008; 93: 1263–1269.

    Article  CAS  PubMed  Google Scholar 

  36. Cowchock FS, McCabe JL, Montgomery BB . Pregnancy after corticosteroid administration in premature ovarian failure (polyglandular endocrinopathy syndrome). Am J Obstet Gynecol 1988; 158: 118–119.

    Article  CAS  PubMed  Google Scholar 

  37. Barbarino-Monnier P, Gobert B, Guillet-May F, Béné MC, Barbarino A, Foliguet B et al. Ovarian autoimmunity and corticotherapy in an in-vitro fertilization attempt. Hum Reprod 1995; 10: 2006–2007.

    Article  CAS  PubMed  Google Scholar 

  38. Corenblum B, Rowe T, Taylor PJ . High-dose, short-term glucocorticoids for the treatment of infertility resulting from premature ovarian failure. Fertil Steril 1993; 59: 988–991.

    Article  CAS  PubMed  Google Scholar 

  39. Blumenfeld Z, Halachmi S, Peretz BA, Shmuel Z, Golan D, Makler A et al. Premature ovarian failure—the prognostic application of autoimmunity on conception after ovulation induction. Fertil Steril 1993; 59: 750–755.

    Article  CAS  PubMed  Google Scholar 

  40. Falorni A, Brozzetti A, Aglietti MC, Esposito R, Minarelli V, Tomaro ES et al. Progressive decline of residual follicle pool after clinical diagnosis of autoimmune ovarian insufficiency. Clin Endocrinol 2012; 77: 453–458.

    Article  Google Scholar 

  41. Visser JA, Durlinger AL, Peters IJ, van den Heuvel ER, Rose UM, Kramer P et al. Increased oocyte degeneration and follicular atresia during the estrous cycle in anti-Müllerian hormone null mice. Endocrinology 2007; 148: 2301–2308.

    Article  CAS  PubMed  Google Scholar 

  42. Falsetti L, Scalchi S, Villani MT, Bugari G . Premature ovarian failure. Gynecol Endocrinol 1999; 13: 189–195.

    Article  CAS  PubMed  Google Scholar 

  43. Betterle C, Dal Pra C, Mantero F, Zanchetta R . Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev 2002; 23: 327–364.

    Article  CAS  PubMed  Google Scholar 

  44. Forges T, Monnier-Barbarino P, Faure GC, Bene MC . Autoimmunity and antigenic targets in ovarian pathology. Hum Reprod Update 2004; 10: 163–175.

    Article  CAS  PubMed  Google Scholar 

  45. Kim TJ, Anasti JN, Flack MR, Kimzey LM, Defensor RA, Nelson LM . Routine endocrine screening for patients with karyotypically normal spontaneous premature ovarian failure. Obstet Gynecol 1997; 89: 777–779.

    Article  CAS  PubMed  Google Scholar 

  46. Ryan MM, Jones HR . Myasthenia gravis and premature ovarian failure. Muscle Nerve 2004; 30: 231–233.

    Article  PubMed  Google Scholar 

  47. Perheentupa J . Autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. J Clin Endocrinol Metab 2006; 91: 2843–2850.

    Article  CAS  PubMed  Google Scholar 

  48. Betterle C, Greggio NA, Volpato M . Clinical Review 93: autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab 1998; 83: 1049–1055.

    Article  CAS  PubMed  Google Scholar 

  49. Wolff AS, Sarkadi AK, Maródi L, Kärner J, Orlova E, Oftedal BE et al. Anti-cytokine autoantibodies preceding onset of autoimmune polyendocrine syndrome type I features in early childhood. J Clin Immunol 2013; 33: 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  50. Meloni A, Furcas M, Cetani F, Marcocci C, Falorni A, Perniola R et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab 2008; 93: 4389–4397.

    Article  CAS  PubMed  Google Scholar 

  51. Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J . Clinical variation of autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990; 322: 1829–1836.

    Article  CAS  PubMed  Google Scholar 

  52. Gylling M, Tuomi T, Bjorses P, Kontiainen S, Prartanen J, Christie MR et al. SS-cell autoantibodies, human leukocyte Antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy*. J Clin Endocrinol Metab 2000; 85: 4434–4440.

    CAS  PubMed  Google Scholar 

  53. Halonen M, Eskelin P, Myher AG, Perheentupa J, Husebye ES, Kampe O et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy phenotype. J Clin Endocrinol Metab 2002; 87: 2568–2574.

    Article  CAS  PubMed  Google Scholar 

  54. Perheentupa J . APS-1/APECED: the clinical disease and therapy. Endocrinol Metab Clin North Am 2002; 31: 295–320.

    Article  PubMed  Google Scholar 

  55. Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M et al. Positional cloning of the APECED gene. Nat Genet 1997; 17: 393–398.

    Article  CAS  PubMed  Google Scholar 

  56. Aaltonen J, Bjorses P, Perheentupa J, Horelli-Kuitunen N, Palotie A, Peltonen L et al. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 1997; 17: 399–403.

    Article  Google Scholar 

  57. Heino M, Peterson P, Kudoh J, Shimizu N, Antonarakis SE, Scott HS et al. APECED mutations in the autoimmune regulator (AIRE) gene. Hum Mutat 2001; 18: 205–211.

    Article  CAS  PubMed  Google Scholar 

  58. Mathis D, Benoist C . A decade of AIRE. Nat Rev Immunol 2007; 7: 645–650.

    Article  CAS  PubMed  Google Scholar 

  59. Derbinski J, Schulte A, Kyewski B, Klein L . Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001; 2: 1032–1039.

    Article  CAS  PubMed  Google Scholar 

  60. Stockinger B . T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv Immunol 1999; 71: 229–265.

    Article  CAS  PubMed  Google Scholar 

  61. Miller JFAP, Heath WR . Self-ignorance in the peripheral T-cell pool. Immunol Rev 1993; 133: 131–150.

    Article  CAS  PubMed  Google Scholar 

  62. Jolicoeur C, Hanahan D, Smith KM . T-cell tolerance in transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc Natl Acad Sci USA 1994; 91: 6707–6711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Anderson AC, Nicholson LB, Legge KL, Turchin V, Zaghouani H, Kuchroo VK . High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J Exp Med 2000; 191: 761–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Klein L, Klugmann M, Nave KA, Tuohy VK, Kyewski B . Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat Med 2000; 6: 56–61.

    Article  CAS  PubMed  Google Scholar 

  65. Klein L, Roettinger B, Kyewski B . Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. Eur J Immunol 2001; 31: 2476–2486.

    Article  CAS  PubMed  Google Scholar 

  66. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002; 298: 1395–1401.

    Article  CAS  PubMed  Google Scholar 

  67. Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Immunol 2005; 202: 33–45.

    CAS  Google Scholar 

  68. Gotter J, Brors B, Hergenhahn M, Kyewski B . Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 2004; 199: 155–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ramsey C, Winqvist O, Puhakka L, Halonen M, Moro A, Kampe O et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet 2002; 11: 397–409.

    Article  CAS  PubMed  Google Scholar 

  70. DeVoss J, Hou Y, Johannes K, Lu W, Liou GI, Rinn J et al. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J Exp Med 2006; 203: 2727–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fan Y, Rudert WA, Grupillo M, He J, Sisino G, Trucco M . Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J 2009; 28: 2812–2824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gavanescu I, Kessler B, Ploegh H, Benoist C, Mathis D . Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity. Proc Natl Acad Sci USA 2007; 104: 4583–4587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kyewski B, Taubert R . How promiscuity promotes tolerance: the case of myasthenia gravis. Ann NY Acad Sci 2008; 1132: 157–162.

    Article  CAS  PubMed  Google Scholar 

  74. Peterson P, Org T, Rebane A . Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 2008; 8: 948–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramsey C, Bukrinsky A, Peltonen L . Systematic mutagenesis of the functional domains of AIRE reveals their role in intracellular targeting. Hum Mol Genet 2002; 11: 3299–3308.

    Article  CAS  PubMed  Google Scholar 

  76. Kumar PG, Laloraya M, Wang CY, Ruan QG, Davoodi-Semiromi A, Kao KJ et al. The autoimmune regulator (AIRE) is a DNA-binding protein. J Biol Chem 2001; 276: 41357–41364.

    Article  CAS  PubMed  Google Scholar 

  77. Mathis D, Benoist C . Aire. Annu Rev Immunol 2009; 27: 287–312.

    Article  CAS  PubMed  Google Scholar 

  78. Oven I, Brdičková N, Kohoutek J, Vaupotič T, Narat M, Peterlin BM . AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol 2007; 27: 8815–8823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ilmarinen T, Kangas H, Kytömaa T, Eskelin P, Saharinen J, Seeler JS et al. Functional interaction of AIRE with PIAS1 in transcriptional regulation. Mol Immunol 2008; 45: 1847–1862.

    Article  CAS  PubMed  Google Scholar 

  80. Meloni A, Fiorillo E, Corda D, Incani F, Serra ML, Contini A et al. DAXX I is a new AIRE-interacting protein. J Biol Chem 2010; 285: 13012–13021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Org T, Chignola F, Hetényi C, Gaetani M, Rebane A, Liiv I et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep 2008; 9: 370–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Org T, Rebane A, Kisand K, Laan M, Haljasorg U, Andreson R et al. AIRE activated tissue specific genes have histone modifications associated with inactive chromatin. Hum Mol Genet 2009; 18: 4699–4710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Žumer K, Low AK, Jiang H, Saksela K, Peterlin BM . Unmodified histone H3K4 and DNA-dependent protein kinase recruit autoimmune regulator to target genes. Mol Cell Biol 2012; 32: 1354–1362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Johnnidis JB, Venanzi ES, Taxman DJ, Ting JP, Benoist CO, Mathis DJ . Chromosomal clustering of genes controlled by the aire transcription factor. Proc Natl Acad Sci USA 2005; 102: 7233–7238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Villaseñor J, Besse W, Benoist C, Mathis D . Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated. Proc Natl Acad Sci USA 2008; 105: 15854–15859.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Derbinski J, Pinto S, Rösch S, Hexel K, Kyewski B . Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci USA 2008; 105: 657–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rinderle C, Christensen HM, Schweiger S, Lehrach H, Yaspo ML . AIRE encodes a nuclear protein co-localizing with cytoskeletal filaments: altered sub-cellular distribution of mutants lacking the PHD zinc fingers. Hum Mol Genet 1999; 8: 277–290.

    Article  CAS  PubMed  Google Scholar 

  88. Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D . The cellular mechanism of Aire control of T cell tolerance. Immunity 2005; 23: 227–239.

    Article  CAS  PubMed  Google Scholar 

  89. Hubert FX, Kinkel SA, Davey GM, Phipson B, Mueller SN, Liston A et al. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood 2011; 118: 2462–2472.

    Article  CAS  PubMed  Google Scholar 

  90. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC . Aire regulates negative selection of organ-specific T cells. Nat Immunol 2003; 4: 350–354.

    Article  CAS  PubMed  Google Scholar 

  91. Aschenbrenner K, D'Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 2007; 8: 351–358.

    Article  CAS  PubMed  Google Scholar 

  92. Hansenne I, Louis C, Martens H, Dorban G, Charlet-Renard C, Peterson P et al. Aire and Foxp3 expression in a particular microenvironment for T cell differentiation. Neuroimmunomodulation 2009; 16: 35–44.

    Article  CAS  PubMed  Google Scholar 

  93. Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science 2013; 339: 1219–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Devoss JJ, Shum AK, Johannes KP, Lu W, Krawisz AK, Wang P et al. Effector mechanisms of the autoimmune syndrome in the murine model of autoimmune polyglandular syndrome type 1. J Immunol 2008; 181: 4072–4079.

    Article  CAS  PubMed  Google Scholar 

  95. Gavanescu I, Benoist C, Mathis D . B cells are required for Aire-deficient mice to develop multi-organ autoinflammation: a therapeutic approach for APECED patients. Proc Natl Acad Sci USA 2008; 105: 13009–13014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kekalainen E, Miettinen A, Arstila TP . Does the deficiency of Aire in mice really resemble human APECED? Nat Rev Immunol 2007; 7 : 1.

    Article  PubMed  CAS  Google Scholar 

  97. Jiang W, Anderson MS, Bronson R, Mathis D, Benoist C . Modifier loci condition autoimmunity provoked by Aire deficiency. J Exp Med 2005; 202: 805–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jasti S, Warren BD, McGinnis LK, Kinsey WH, Petroff BK, Petroff MG . The autoimmune regulator prevents premature reproductive senescence in female mice. Biol Reprod 2012; 86: 110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bagavant H, Fusi FM, Baisch J, Kurth B, David CS, Tung KS . Immunogenicity and contraceptive potential of a human zona pellucida 3 peptide vaccine. Biol Reprod 1997; 56: 764–770.

    Article  CAS  PubMed  Google Scholar 

  100. Cheng M, Fan U, Johannes K, Anderson MS . Antigenic targets in Aire-mediated ovarian autoimmunity. J Immunol 2011; 186 ( Meeting Abstract Supplement): 44.41.

    Google Scholar 

  101. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T . Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985; 161: 72–87.

    Article  CAS  PubMed  Google Scholar 

  102. Asano M, Toda M, Sakaguchi N, Sakaguchi S . Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. j Exp Med 1996; 184: 387–396.

    Article  CAS  PubMed  Google Scholar 

  103. Samy ET, Parker LA, Sharp CP, Tung KS . Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+CD25+ regulatory T cells in the regional lymph node. J Exp Med 2005; 202: 771–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tong ZB, Nelson LM . A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 1999; 140: 3720–3726.

    Article  CAS  PubMed  Google Scholar 

  105. Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet 2000; 26: 267–268.

    Article  CAS  PubMed  Google Scholar 

  106. Alimohammadi M, Björklund P, Hallgren Å, Pöntynen N, Szinnai G, Shikama N et al. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N Engl J Med 2008; 358: 1018–1028.

    Article  CAS  PubMed  Google Scholar 

  107. Hou Y, DeVoss J, Dao V, Kwek S, Simko JP, McNeel DG et al. An aberrant prostate antigen-specific immune response causes prostatitis in mice and is associated with chronic prostatitis in humans. J Clin Invest 2009; 119: 2031–2041.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the many members of their labs who have contributed valuably to the work in this article through discussion and interaction. We are grateful to Matahb Fakhari for technical work with ovarian immunohistochemistry. The Aire-deficient mice were a generous donation from the laboratory of Christoph Benoist and Diane Mathis at Harvard Medical School. This work was supported by NIH grants R21HD062879 and R01HD045611 to MGP.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, B., Kinsey, W., McGinnis, L. et al. Ovarian autoimmune disease: clinical concepts and animal models. Cell Mol Immunol 11, 510–521 (2014). https://doi.org/10.1038/cmi.2014.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.97

This article is cited by

Search

Quick links