Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Highlight
  • Published:

Immune regulation by CD52-expressing CD4 T cells

Abstract

T-cell regulation by CD52-expressing CD4 T cells appears to operate by two different and possibly synergistic mechanisms. The first is by its release from the cell surface of CD4 T cells that express high levels of CD52 that then binds to the inhibitory sialic acid-binding immunoglobulin-like lectins-10 (Siglec-10) receptor to attenuate effector T-cell activation by impairing phosphorylation of T-cell receptor associated lck and zap-70. The second mechanism appears to be by crosslinkage of the CD52 molecules by an as yet unidentified endogenous ligand that is mimicked by a bivalent anti-CD52 antibody that results in their expansion.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Ohkura N, Kitagawa Y, Sakaguchi S . Development and maintenance of regulatory T cells. Immunity 2013; 38: 414–423.

    Article  CAS  PubMed  Google Scholar 

  2. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 2013; 19: 739–746.

    Article  CAS  PubMed  Google Scholar 

  3. Bandala-Sanchez E, Zhang Y, Reinwald S, Dromey JA, Lee BH, Qian J et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol 2013; 14: 741–748.

    Article  CAS  PubMed  Google Scholar 

  4. Hale G . Synthetic peptide mimotope of the CAMPATH-1 (CD52) antigen, a small glycosylphosphatidylinositol-anchored glycoprotein. Immunotechnology 1995; 1: 175–187.

    Article  CAS  PubMed  Google Scholar 

  5. Varki A, Angata T . Siglecs—the major subfamily of I-type lectins. Glycobiology 2006; 16: 1R–27R.

    Article  CAS  PubMed  Google Scholar 

  6. Pillai S, Netravali IA, Cariappa A, Mattoo H . Siglecs and immune regulation. Annu Rev Immunol 2012; 30: 357–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li N, Zhang W, Wan T, Zhang J, Chen T, Yu Y et al. Cloning and characterization of Siglec-10, a novel sialic acid binding member of the Ig superfamily, from human dendritic cells. J Biol Chem 2001; 276: 28106–28112.

    Article  CAS  PubMed  Google Scholar 

  8. Whitney G, Wang S, Chang H, Cheng KY, Lu P, Zhou XD et al. A new Siglec family member, Siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33. Eur J Biochem 2001; 268: 6083–6096.

    Article  CAS  PubMed  Google Scholar 

  9. Kivi E, Elima K, Aalto K, Nymalm Y, Auvinen K, Koivunen E et al. Human Siglec-10 can bind to vascular adhesion protein-1 and serves as its substrate. Blood 2009; 114: 5385–5392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Masuyama J, Yoshio T, Suzuki K, Kitagawa S, Iwamoto M, Kamimura T et al. Characterization of the 4C8 antigen involved in transendothelial migration of CD26hi T cells after tight adhesion to human umbilical vein endothelial cell monolayers. J Exp Med 1999; 189: 979–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Masuyama J, Kaga S, Kano S, Minota S . A novel costimulation pathway via the 4C8 antigen for the induction of CD4+ regulatory T cells. J Immunol 2002; 169: 3710–3716.

    Article  CAS  PubMed  Google Scholar 

  12. Watanabe T, Masuyama J, Sohma Y, Inazawa H, Horie K, Kojima K et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol 2006; 120: 247–259.

    Article  CAS  PubMed  Google Scholar 

  13. Hale G . CD52 (CAMPATH1). J Biol Regul Homeost Agents 2001; 15: 386–391.

    CAS  PubMed  Google Scholar 

  14. Schreiber TH, Wolf D, Tsai MS, Chirinos J, Deyev VV, Gonzalez L et al. Therapeutic treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Invest 2010; 120: 3629–3640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taraban VY, Ferdinand JR, Al-Shamkhani A . Expression of TNFRSF25 on conventional T cells and tregs. J Clin Invest 2011; 121: 463–464; author reply 465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirchhoff C . CD52 is the ‘major maturation-associated’ sperm membrane antigen. Mol Hum Reprod 1996; 2: 9–17.

    Article  CAS  PubMed  Google Scholar 

  17. Ratzinger G, Reagan JL, Heller G, Busam KJ, Young JW . Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft–host interactions in transplantation. Blood 2003; 101: 1422–1429.

    Article  CAS  PubMed  Google Scholar 

  18. Elsner J, Hochstetter R, Spiekermann K, Kapp A . Surface and mRNA expression of the CD52 antigen by human eosinophils but not by neutrophils. Blood 1996; 88: 4684–4693.

    CAS  PubMed  Google Scholar 

  19. Diekman AB, Norton EJ, Klotz KL, Westbrook VA, Shibahara H, Naaby-Hansen S et al. N-linked glycan of a sperm CD52 glycoform associated with human infertility. FASEB J 1999; 13: 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  20. Yamaguchi R, Yamagata K, Hasuwa H, Inano E, Ikawa M, Okabe M . CD52, known as a major maturation-associated sperm membrane antigen secreted from the epididymis, is not required for fertilization in the mouse. Genes Cells 2008; 13: 851–861.

    Article  CAS  PubMed  Google Scholar 

  21. Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ . Interleukin 2 signaling is required for CD4+ regulatory T cell function. J Exp Med 2002; 196: 851–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 68–73.

    Article  CAS  PubMed  Google Scholar 

  23. Hale G, Bright S, Chumbley G, Hoang T, Metcalf D, Munro AJ et al. Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood 1983; 62: 873–882.

    CAS  PubMed  Google Scholar 

  24. Gribben JG, Hallek M . Rediscovering alemtuzumab: current and emerging therapeutic roles. Br J Haematol 2009; 144: 818–831.

    Article  CAS  PubMed  Google Scholar 

  25. Robertson NP . Alemtuzumab for multiple sclerosis: a new age of immunotherapy. J Neurol 2013; 260: 343–345.

    Article  CAS  PubMed  Google Scholar 

  26. Wiendl H, Kieseier B . Multiple sclerosis: reprogramming the immune repertoire with alemtuzumab in MS. Nat Rev Neurol 2013; 9: 125–126.

    Article  CAS  PubMed  Google Scholar 

  27. Cossburn M, Pace AA, Jones J, Ali R, Ingram G, Baker K et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology 2011; 77: 573–579.

    Article  CAS  PubMed  Google Scholar 

  28. Costelloe L, Jones J, Coles A . Secondary autoimmune diseases following alemtuzumab therapy for multiple sclerosis. Expert Rev Neurother 2012; 12: 335–341.

    Article  CAS  PubMed  Google Scholar 

  29. Peppel K, Crawford D, Beutler B . A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med 1991; 174: 1483–1489.

    Article  CAS  PubMed  Google Scholar 

  30. Feldmann M, Maini RN . Lasker clinical medical research award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 2003; 9: 1245–1250.

    Article  CAS  PubMed  Google Scholar 

  31. Dinh TN, Kyaw TS, Kanellakis P, To K, Tipping P, Toh BH et al. Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation 2012; 126: 1256–1266.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ban-Hock Toh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toh, BH., Kyaw, T., Tipping, P. et al. Immune regulation by CD52-expressing CD4 T cells. Cell Mol Immunol 10, 379–382 (2013). https://doi.org/10.1038/cmi.2013.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.35

Search

Quick links