Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Multifunctional immune responses of HMBPP-specific Vγ2Vδ2 T cells in M. tuberculosis and other infections

Abstract

Vγ2Vδ2 T (also known as Vγ9Vδ2 T) cells exist only in primates, and in humans represent a major γδ T-cell sub-population in the total population of circulating γδ T cells. Results from recent studies suggest that while (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen from Mycobacterium tuberculosis (Mtb) and other microbes activates and expands primate Vγ2Vδ2 T cells, the Vγ2Vδ2 T-cell receptor (TCR) recognizes and binds to HMBPP on antigen-presenting cells (APC). In response to HMBPP stimulus, Vγ2Vδ2 TCRs array to form signaling-related nanoclusters or nanodomains during the activation of Vγ2Vδ2 T cells. Primary infections with HMBPP-producing pathogens drive the evolution of multieffector functional responses in Vγ2Vδ2 T cells, although Vγ2Vδ2 T cells display different patterns of responses during the acute and chronic phases of Mtb infection and in other infections. Expanded Vγ2Vδ2 T cells in primary Mtb infection can exhibit a broader TCR repertoire and a greater clonal response than previously assumed, with different distribution patterns of Vγ2Vδ2 T-cell clones in lymphoid and non-lymphoid compartments. Emerging in vivo data suggest that HMBPP activation of Vγ2Vδ2 T cells appears to impact other immune cells during infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science 2002; 295: 2255–2258.

    Article  CAS  PubMed Central  Google Scholar 

  2. Yuan Z, Wang R, Lee Y, Chen CY, Yu X, Wu Z et al. Tuberculosis-induced variant IL-4 mRNA encodes a cytokine functioning as growth factor for (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate-specific Vgamma2Vdelta2 T cells. J Immunol 2009; 182: 811–819.

    Article  CAS  PubMed Central  Google Scholar 

  3. O'Brien RL, Roark CL, Jin N, Aydintug MK, French JD, Chain JL et al. Gammadelta T-cell receptors: functional correlations. Immunol Rev 2007; 215: 77–88.

    Article  CAS  Google Scholar 

  4. Thedrez A, Sabourin C, Gertner J, Devilder MC, Allain-Maillet S, Fournié JJ et al. Self/non-self discrimination by human gammadelta T cells: simple solutions for a complex issue? Immunol Rev 2007; 215: 123–135.

    Article  CAS  Google Scholar 

  5. Belmant C, Espinosa E, Poupot R, Peyrat MA, Guiraud M, Poquet Y et al. 3-Formyl-1-butyl pyrophosphate A novel mycobacterial metabolite-activating human gammadelta T cells. J Biol Chem 1999; 274: 32079–32084.

    Article  CAS  Google Scholar 

  6. Eberl M, Hintz M, Reichenberg A, Kollas AK, Wiesner J, Jomaa H . Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett 2003; 544: 4–10.

    Article  CAS  Google Scholar 

  7. Chen ZW, Letvin NL . Adaptive immune response of Vgamma2Vdelta2 T cells: a new paradigm. Trends Immunol 2003; 24: 213–219.

    Article  CAS  PubMed Central  Google Scholar 

  8. Morita CT, Mariuzza RA, Brenner MB . Antigen recognition by human gamma delta T cells: pattern recognition by the adaptive immune system. Springer Semin Immunopathol 2000; 22: 191–217.

    Article  CAS  Google Scholar 

  9. Yao S, Huang D, Chen CY, Halliday L, Zeng G, Wang RC et al. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis. PLoS Pathog 2010; 6: e1000789.

    Article  PubMed Central  Google Scholar 

  10. Vani J, Shaila MS, Rao MK, Krishnaswamy UM, Kaveri SV, Bayry J . B lymphocytes from patients with tuberculosis exhibit hampered antigen-specific responses with concomitant overexpression of interleukin-8. J Infect Dis 2009; 200: 481–482; author reply 482–484.

    Article  CAS  Google Scholar 

  11. Eberl M, Altincicek B, Kollas AK, Sanderbrand S, Bahr U, Reichenberg A et al. Accumulation of a potent gammadelta T-cell stimulator after deletion of the lytB gene in Escherichia coli. Immunology 2002; 106: 200–211.

    Article  CAS  PubMed Central  Google Scholar 

  12. Sarikonda G, Wang H, Puan KJ, Liu XH, Lee HK, Song Y et al. Photoaffinity antigens for human gammadelta T cells. J Immunol 2008; 181: 7738–7750.

    Article  CAS  PubMed Central  Google Scholar 

  13. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA 2004; 101: 4560–4565.

    Article  CAS  Google Scholar 

  14. Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H . V gamma 2V delta 2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J Immunol 1995; 154: 998–1006.

    CAS  PubMed  Google Scholar 

  15. Wang H, Lee HK, Bukowski JF, Li H, Mariuzza RA, Chen ZW et al. Conservation of nonpeptide antigen recognition by rhesus monkey V gamma 2V delta 2 T cells. J Immunol 2003; 170: 3696–3706.

    Article  CAS  Google Scholar 

  16. Chen ZW, Li Y, Zeng X, Kuroda MJ, Schmitz JE, Shen Y et al. The TCR repertoire of an immunodominant CD8+ T lymphocyte population. J Immunol 2001; 166: 4525–4533.

    Article  CAS  Google Scholar 

  17. Wei H, Wang R, Yuan Z, Chen CY, Huang D, Halliday L et al. DR*W201/P65 tetramer visualization of epitope-specific CD4 T-cell during M. tuberculosis infection and its resting memory pool after BCG vaccination. PLoS One 2009; 4: e6905.

    Article  PubMed Central  Google Scholar 

  18. Wei H, Huang D, Lai X, Chen M, Zhong W, Wang R et al. Definition of APC presentation of phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate to Vgamma2Vdelta 2 TCR. J Immunol 2008; 181: 4798–4806.

    Article  CAS  PubMed Central  Google Scholar 

  19. Chen Y, Shao L, Ali Z, Cai J, Chen ZW . NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal V{gamma}2V{delta}2 T-cell expansion. Blood 2008; 111: 4220–4232.

    Article  CAS  PubMed Central  Google Scholar 

  20. Huang D, Chen CY, Ali Z, Shao L, Shen L, Lockman HA et al. Antigen-specific Vgamma2Vdelta2 T effector cells confer homeostatic protection against pneumonic plaque lesions. Proc Natl Acad Sci USA 2009; 106: 7553–7558.

    Article  CAS  Google Scholar 

  21. Ryan-Payseur B, Frencher J, Shen L, Chen CY, Huang D, Chen ZW . Multieffector-functional immune responses of HMBPP-specific Vgamma2Vdelta2 T cells in nonhuman primates inoculated with Listeria monocytogenes {Delta}actA prfA*. J Immunol 2012; 189: 1285–1293.

    Article  CAS  PubMed Central  Google Scholar 

  22. Chen ZW, Letvin NL . Vgamma2Vdelta2+ T cells and anti-microbial immune responses. Microbes Infect 2003; 5: 491–498.

    Article  PubMed Central  Google Scholar 

  23. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, di Sano C et al. Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 2003; 198: 391–397.

    Article  CAS  PubMed Central  Google Scholar 

  24. Pitard V, Roumanes D, Lafarge X, Couzi L, Garrigue I, Lafon ME et al. Long-term expansion of effector/memory Vdelta2-gammadelta T cells is a specific blood signature of CMV infection. Blood 2008; 112: 1317–1324.

    Article  CAS  PubMed Central  Google Scholar 

  25. Poccia F, Agrati C, Castilletti C, Bordi L, Gioia C, Horejsh D et al. Anti-severe acute respiratory syndrome coronavirus immune responses: the role played by V gamma 9V delta 2 T cells. J Infect Dis 2006; 193: 1244–1249.

    Article  CAS  Google Scholar 

  26. Abate G, Eslick J, Newman FK, Frey SE, Belshe RB, Monath TP et al. Flow-cytometric detection of vaccinia-induced memory effector CD4(+), CD8(+), and gamma delta TCR(+) T cells capable of antigen-specific expansion and effector functions. J Infect Dis 2005; 192: 1362–1371.

    Article  CAS  Google Scholar 

  27. Hoft DF, Brown RM, Roodman ST . Bacille Calmette-Guerin vaccination enhances human gamma delta T cell responsiveness to mycobacteria suggestive of a memory-like phenotype. J Immunol 1998; 161: 1045–1054.

    CAS  PubMed  Google Scholar 

  28. Vermijlen D, Ellis P, Langford C, Klein A, Engel R, Willimann K et al. Distinct cytokine-driven responses of activated blood gammadelta T cells: insights into unconventional T cell pleiotropy. J Immunol 2007; 178: 4304–4314.

    Article  CAS  PubMed Central  Google Scholar 

  29. Meraviglia S, Caccamo N, Salerno A, Sireci G, Dieli F . Partial and ineffective activation of V gamma 9V delta 2 T cells by Mycobacterium tuberculosis-infected dendritic cells. J Immunol 2010; 185: 1770–1776.

    Article  CAS  Google Scholar 

  30. Sicard H, Ingoure S, Luciani B, Serraz C, Fournié JJ, Bonneville M et al. In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 2005; 175: 5471–5480.

    Article  CAS  Google Scholar 

  31. Ali Z, Yan L, Plagman N, Villinger F, Chen ZW . γδ T cell immune manipulation during chronic but not acute phase of simian-human immunodeficiency virus infection confers immunological benefits. J Immunol 2009.

  32. Gong G, Shao L, Wang Y, Chen CY, Huang D, Yao S et al. Phosphoantigen-activated V gamma 2V delta 2 T cells antagonize IL-2-induced CD4+CD25+Foxp3+ T regulatory cells in mycobacterial infection. Blood 2009; 113: 837–845.

    Article  CAS  PubMed Central  Google Scholar 

  33. Chen CY, Huang D, Yao S, Halliday L, Zeng G, Wang RC et al. IL-2 simultaneously expands Foxp3+ T regulatory and T effector cells and confers resistance to severe tuberculosis (TB): implicative Treg-T effector cooperation in immunity to TB. J Immunol 2012; 188: 4278–4288.

    Article  CAS  PubMed Central  Google Scholar 

  34. Shen L, Shen Y, Huang D, Qiu L, Sehgal P, Du GZ et al. Development of Vgamma2Vdelta2+ T cell responses during active mycobacterial coinfection of simian immunodeficiency virus-infected macaques requires control of viral infection and immune competence of CD4+ T cells. J Infect Dis 2004; 190: 1438–1447.

    Article  CAS  PubMed Central  Google Scholar 

  35. Chen ZW . Immunology of AIDS virus and mycobacterial co-infection. Curr HIV Res 2004; 2: 351–355.

    Article  CAS  Google Scholar 

  36. Dieli F, Sireci G, Caccamo N, di Sano C, Titone L, Romano A et al. Selective depression of interferon-gamma and granulysin production with increase of proliferative response by Vgamma9/Vdelta2 T cells in children with tuberculosis. J Infect Dis 2002; 186: 1835–1839.

    Article  CAS  Google Scholar 

  37. Shao L, Zhang W, Zhang S, Chen CY, Jiang W, Xu Y et al. Potent immune responses of Ag-specific Vgamma2Vdelta2+ T cells and CD8+ T cells associated with latent stage of Mycobacterium tuberculosis coinfection in HIV-1-infected humans. AIDS 2008; 22: 2241–2250.

    Article  CAS  PubMed Central  Google Scholar 

  38. Chen ZW, Shen L, Regan JD, Kou Z, Ghim SH, Letvin NL . The T cell receptor gene usage by simian immunodeficiency virus gag-specific cytotoxic T lymphocytes in rhesus monkeys. J Immunol 1996; 156: 1469–1475.

    CAS  PubMed  Google Scholar 

  39. Chen ZW, Yamamoto H, Watkins DI, Levinson G, Letvin NL . Predominant use of a T-cell receptor V beta gene family in simian immunodeficiency virus Gag-specific cytotoxic T lymphocytes in a rhesus monkey. J Virol 1992; 66: 3913–3917.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Du G, Chen CY, Shen Y, Qiu L, Huang D, Wang R et al. TCR repertoire, clonal dominance, and pulmonary trafficking of mycobacterium-specific CD4+ and CD8+ T effector cells in immunity against tuberculosis. J Immunol 2010; 185: 3940–3947.

    Article  CAS  PubMed Central  Google Scholar 

  41. Huang D, Chen CY, Zhang M, Qiu L, Shen Y, Du G et al. Clonal immune responses of Mycobacterium-specific gammadelta T cells in tuberculous and non-tuberculous tissues during M. tuberculosis infection. PLoS One 2012; 7: e30631.

    Article  CAS  PubMed Central  Google Scholar 

  42. Ali Z, Shao L, Halliday L, Reichenberg A, Hintz M, Jomaa H et al. Prolonged (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate-driven antimicrobial and cytotoxic responses of pulmonary and systemic Vgamma2Vdelta2 T cells in macaques. J Immunol 2007; 179: 8287–8296.

    Article  CAS  PubMed Central  Google Scholar 

  43. Huang D, Shen Y, Qiu L, Chen CY, Shen L, Estep J et al. Immune distribution and localization of phosphoantigen-specific Vgamma2Vdelta2 T cells in lymphoid and nonlymphoid tissues in Mycobacterium tuberculosis infection. Infect Immun 2008; 76: 426–436.

    Article  CAS  Google Scholar 

  44. Chen CY, Huang D, Wang RC, Shen L, Zeng G, Yao S et al. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathog 2009; 5: e1000392.

    Article  PubMed Central  Google Scholar 

  45. Zhou L, Chong MM, Littman DR . Plasticity of CD4+ T cell lineage differentiation. Immunity 2009; 30: 646–655.

    Article  CAS  Google Scholar 

  46. Hegazy AN, Peine M, Helmstetter C, Panse I, Fröhlich A, Bergthaler A et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. Immunity 2010; 32: 116–128.

    Article  CAS  Google Scholar 

  47. Martino A, Casetti R, Sacchi A, Poccia F . Central memory Vgamma9Vdelta2 T lymphocytes primed and expanded by bacillus Calmette-Guerin-infected dendritic cells kill mycobacterial-infected monocytes. J Immunol (Baltimore, MD: 1950) 2007; 179: 3057–3064.

    Article  CAS  Google Scholar 

  48. Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM, Bonneville M et al. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis 2001; 184: 1082–1085.

    Article  CAS  Google Scholar 

  49. Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R et al. A role for skin gammadelta T cells in wound repair. Science 2002; 296: 747–749.

    Article  CAS  Google Scholar 

  50. Shevach EM . Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 2009; 30: 636–645.

    Article  CAS  PubMed Central  Google Scholar 

  51. Riley JL, June CH, Blazar BR . Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity 2009; 30: 656–665.

    Article  CAS  PubMed Central  Google Scholar 

  52. Belkaid Y, Tarbell KV . Arming Treg cells at the inflammatory site. Immunity 2009; 30: 322–323.

    Article  CAS  Google Scholar 

  53. Zhang H, Chua KS, Guimond M, Kapoor V, Brown MV, Fleisher TA et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat Med 2005; 11: 1238–1243.

    Article  CAS  Google Scholar 

  54. Ahmadzadeh M, Rosenberg SA . IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 2006; 107: 2409–2414.

    Article  CAS  PubMed Central  Google Scholar 

  55. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 2006; 108: 1571–1579.

    Article  CAS  PubMed Central  Google Scholar 

  56. Wei S, Kryczek I, Edwards RP, Zou L, Szeliga W, Banerjee M et al. Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res 2007; 67: 7487–7494.

    Article  CAS  Google Scholar 

  57. Petermann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR, Heink S et al. gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 2010; 33: 351–363.

    Article  CAS  PubMed Central  Google Scholar 

  58. Castella B, Riganti C, Fiore F, Pantaleoni F, Canepari ME, Peola S et al. Immune modulation by zoledronic acid in human myeloma: an advantageous cross-talk between Vgamma9Vdelta2 T cells, alphabeta CD8+ T cells, regulatory T cells, and dendritic cells. J Immunol 2011; 187: 1578–1590.

    Article  CAS  Google Scholar 

  59. Caccamo N, Battistini L, Bonneville M, Poccia F, Fournié JJ, Meraviglia S et al. CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J Immunol 2006; 177: 5290–5295.

    Article  CAS  Google Scholar 

  60. Ismaili J, Olislagers V, Poupot R, Fournie JJ, Goldman M . Human gamma delta T cells induce dendritic cell maturation. Clin Immunol 2002; 103: 296–302.

    Article  CAS  Google Scholar 

  61. Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, Moser B . A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog 2009; 5: e1000308.

    Article  PubMed Central  Google Scholar 

  62. Brandes M, Willimann K, Bioley G, Lévy N, Eberl M, Luo M et al. Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA 2009; 106: 2307–2312.

    Article  CAS  Google Scholar 

  63. Meuter S, Eberl M, Moser B . Prolonged antigen survival and cytosolic export in cross-presenting human gammadelta T cells. Proc Natl Acad Sci USA 2010; 107: 8730–8735.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Chen Lab staff for technical support and suggestions. This work was supported by the National Institutes of Health R01 grants HL64560 and RR13601 (both to ZWC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng W Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z. Multifunctional immune responses of HMBPP-specific Vγ2Vδ2 T cells in M. tuberculosis and other infections. Cell Mol Immunol 10, 58–64 (2013). https://doi.org/10.1038/cmi.2012.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.46

Keywords

This article is cited by

Search

Quick links