Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Inhibition of Pim2-prolonged skin allograft survival through the apoptosis regulation pathway

Abstract

Recently, apoptosis has been considered to be an important regulator for allograft survival. The serine/threonine kinase Pim2 has been implicated in many apoptotic pathways. In a previous study, we found that pim2 was highly expressed in CD4+ T cells in an allograft model. Here, we further investigated the effects of Pim2 on allograft survival and the underlying mechanisms associated with apoptosis. The results showed that pim2 was overexpressed in grafts and spleens, particularly in spleen CD4+ T cells when acute allorejection occurred, and correlated positively with the extent of rejection. In T cells from the spleens of naive BALB/c mice treated with 5 µM 4a (a specific inhibitor of Pim2) for 24 h, the apoptosis rate increased and the phosphorylation of BAD was decreased. Furthermore, adoptive transfer of CD4+ T cells treated with 4a in vitro to allografted severe combined immunodeficiency (SCID) mice effectively prolonged allograft survival from 19.5±1.7 days to 31±2.3 days. Moreover, the results demonstrated that the CD4+CD25 effector T-cell subset was the predominate expresser of the pim2 gene as compared with the CD4+CD25+ regulatory T (Treg) cell subset. Alloantigen-induced CD4+CD25+ T cells displayed less Foxp3 expression and a low suppression of apoptosis compared with effector CD4+CD25 T cells treated with 4a. Collectively, these data revealed that Pim2 facilitated allograft rejection primarily by modulating the apoptosis of effector T cells and the function of Treg cells. These data suggested that Pim2 may be an important target for in vivo anti-rejection therapies and for the ex vivo expansion of CD4+CD25+ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Spivey TL, Uccellini L, Ascierto ML, Zoppoli G, de Giorgi V, Delogu LG et al. Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med. 2011; 9: 174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pallet N, Dieudé M, Cailhier J, Hébert M . The molecular legacy of apoptosis in transplantation. Am J Transplant 2012; 12: 1378–1384.

    Article  CAS  PubMed  Google Scholar 

  3. Bachmann M, Moroy T . The serine/threonine kinase PIM-1. Int J Biochem Cell Biol 2005; 37: 726–730.

    Article  CAS  PubMed  Google Scholar 

  4. Breuer ML, Cuypers HT, Berns A . Evidence for the involvement of PIM-2, a new common proviral insertion site, in progression of lymphomas. EMBO J 1989; 8: 743–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mikkers H, Allen J, Knipscheer P, Romeijn L, Hart A, Vink E et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Gen 2002; 32: 153–159.

    Article  CAS  Google Scholar 

  6. Alvarado Y, Giles FJ, Swords RT . The PIM kinases in hematological cancers. Expert Rev Hematol 2012; 5: 81–96.

    Article  CAS  PubMed  Google Scholar 

  7. Xia Z, Knaak C, Ma J, Beharry ZM, McInnes C, Wang W et al. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2protein kinases. J Med Chem 2009; 52: 74–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beharry Z, Zemskova M, Mahajan S, Zhang F, Ma J, Xia Z et al. Novel benzylidene-thiazolidine-2,4-diones inhibit Pim protein kinase activity and induce cell cycle arrest in leukemia and prostate cancer cells. Mol Cancer Ther 2009; 8: 1473–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Issa F, Schiopu A, Wood KJ . Role of T cells in graft rejection and transplanttation tolerance. Expert Rev Clin Immunol 2010; 6: 155–169.

    Article  CAS  PubMed  Google Scholar 

  10. Rocha PN, Plumb TJ, Crowley SD, Coffman TM . Effector mechanisms in transplant rejection. Immunol Rev 2003; 196: 51–64.

    Article  CAS  PubMed  Google Scholar 

  11. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  12. Kaser T, Gerner W, Hammer SE Patzl M, Saalmüller A . Phenotypic and functional characterisation of porcine CD4+CD25high regulatory T cells. Vet Immunol Immunopathol 2008; 122: 153–158.

    Article  PubMed  Google Scholar 

  13. Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI . In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 2007; 109: 827–835.

    Article  CAS  PubMed  Google Scholar 

  14. Basu S, Golovina T, Mikheeva T, June CH, Riley JL . Foxp3-mediated induction of pim2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol 2008; 180: 5794–5798.

    Article  CAS  PubMed  Google Scholar 

  15. Koyasu S . The role of PI3K in immune cells. Nat. Immunol 2003; 4: 313–319.

    Article  CAS  PubMed  Google Scholar 

  16. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB . The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 2003; 17: 1841–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang Q, Bluestone JA . The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 2008; 9: 239–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nomura M, Plain KM, Verma N, Robinson C, Boyd R, Hodgkinson SJ et al. The cellular basis of cardiac allograft rejection. IX. Ratio of naive CD4+CD25+ T cells/CD4+CD25 T cells determines rejection or tolerance. Transpl Immunol 2006; 15: 311–318.

    Article  CAS  PubMed  Google Scholar 

  19. Golovina TN, Mikheeva T, Brusko TM, Blazar BR, Bluestone JA, Riley JL . Retinoic acid and rapamycin differentially affect and synergistically promote the ex vivo expansion of natural human T regulatory cells. PLoS One 2011; 6: e15868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB . Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 2005; 105: 4477–4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fox CJ, Hammerman PS, Thompson CB . The Pim kinases control rapamycin-resistant T cell survival and activation. J Exp Med 2005; 201: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aho TL, Lund RJ, Ylikoski EK, Matikainen S, Lahesmaa R, Koskinen PJ . Expression of human pim family genes is selectively up-regulated by cytokines promoting T helper type 1, but not T helper type 2 cell differentiation. Immunology 2005; 116: 82–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu J, Wang D, Zhang C, Song J, Liang T, Jin W et al. Alternatively expressed genes identified in the CD4+ T cells of allograft rejection mice. Cell Transpl 2011; 20: 333–350.

    Article  Google Scholar 

  24. Learn CA, Fecci PE, Schmittling RJ, Xie W, Karikari I, Mitchell DA et al. Profiling of CD4+, CD8+, and CD4+CD25+CD45RO+FoxP3+ T cells in patients with malignant glioma reveals differential expression of the immunologic transcriptome compared with T cells from healthy volunteers. Clin Cancer Res 2006; 12: 7306–7315.

    Article  CAS  PubMed  Google Scholar 

  25. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T et al. Foxp3-dependent and-independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNAmicroarray analysis. Int Immunol 2006; 18: 1197–1209.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY . Genome-wide analysis of Foxp3 target genes in developing andmature regulatory T cells. Nature 2007; 445: 936–940.

    Article  CAS  PubMed  Google Scholar 

  27. Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, Tamas P et al. Protein kinase B controls transcriptional programs that directcytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 2011; 34: 224–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vander Lugt NM, Domen J, Verhoeven E, Linders K, van der Gulden H, Allen J et al. Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. Embo J 1995; 14: 2536–2544.

    Article  CAS  Google Scholar 

  29. Yan B, Zemskova M, Holder S, Chin V, Kraft A, Koskinen PJ et al. The PIM-2 kinase phosphorylates BAD on serine 112 andreverses BAD-induced cell death. J Biol Chem 2003; 278: 45358–45367.

    Article  CAS  PubMed  Google Scholar 

  30. Muller YD, Golshayan D, Ehirchiou D, Wekerle T, Seebach JD, Bühler LH . T regulatory cells in xenotransplantation. Xenotransplantation 2009; 16: 121–128.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 81071172, G. Hou) and the Natural Science Foundation of Shandong Province (No. ZR2010CM025, G. Hou).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Zhang, C., Liang, T. et al. Inhibition of Pim2-prolonged skin allograft survival through the apoptosis regulation pathway. Cell Mol Immunol 9, 503–510 (2012). https://doi.org/10.1038/cmi.2012.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.41

Keywords

This article is cited by

Search

Quick links