Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells

Abstract

Mannan-binding lectin (MBL) plays a key role in the lectin pathway of complement activation and can influence cytokine expression. Toll-like receptor 4 (TLR4) is expressed extensively and has been demonstrated to be involved in lipopolysaccharide (LPS)-induced signaling. We first sought to determine whether MBL exposure could modulate LPS-induced inflammatory cytokine secretion and nuclear factor-κB (NF-κB) activity by using the monocytoid cell line THP-1. We then investigated the possible mechanisms underlying any observed regulatory effect. Using ELISA and reverse transcriptase polymerase chain reaction (RT-PCR) analysis, we found that at both the protein and mRNA levels, treatment with MBL suppresses LPS-induced tumor-necrosis factor (TNF)-α and IL-12 production in THP-1 cells. An electrophoretic mobility shift assay and western blot analysis revealed that MBL treatment can inhibit LPS-induced NF-κB DNA binding and translocation in THP-1 cells. While the binding of MBL to THP-1 cells was evident at physiological calcium concentrations, this binding occurred optimally in response to supraphysiological calcium concentrations. This binding can be partly inhibited by treatment with either a soluble form of recombinant TLR4 extracellular domain or anti-TLR4 monoclonal antibody (HTA125). Activation of THP-1 cells by LPS treatment resulted in increased MBL binding. We also observed that MBL could directly bind to the extracellular domain of TLR4 in a dose-dependent manner, and this interaction could attenuate the binding of LPS to cell surfaces. Taken together, these data suggest that MBL may affect cytokine expression through modulation of LPS-/TLR-signaling pathways. These findings suggest that MBL may play an important role in both immune regulation and the signaling pathways involved in cytokine networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Super M, Thiel S, Lu J, Levinsky RJ, Turner MW . Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet 1989; 2: 1236–1239.

    Article  CAS  PubMed  Google Scholar 

  2. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA . Phylogenetic perspectives in innate immunity. Science 1999; 284: 1313–1318.

    Article  CAS  PubMed  Google Scholar 

  3. Lu J, Wiedemann H, Timpl R, Reid KB . Similarity in structure between C1q and the collectins as judged by electron microscopy. Behring Inst Mitt 1993; 93: 6–16.

    CAS  Google Scholar 

  4. Palaniyar N, Zhang L, Kuzmenko A, Ikegami M, Wan S, Wu H et al. The role of pulmonary collectin N-terminal domains in surfactant structure, function, and homeostasis in vivo. J Biol Chem 2002; 277: 26971–26979.

    Article  CAS  PubMed  Google Scholar 

  5. Schweinle JE, Nishiyasu M, Ding TQ, Sastry K, Gillies SD, Ezekowitz RA . Truncated forms of mannose-binding protein multimerize and bind to mannose-rich Salmonella montevideo but fail to activate complement in vitro. J Biol Chem 1993; 268: 364–370.

    CAS  PubMed  Google Scholar 

  6. Ikegami M, Elhalwagi BM, Palaniyar N, Dienger K, Korfhagen T, Whitsett JA et al. The collagen-like region of surfactant protein A (SP-A) is required for correction of surfactant structural and functional defects in the SP-A null mouse. J Biol Chem 2001; 276: 38542–38548.

    Article  CAS  PubMed  Google Scholar 

  7. Sheriff S, Chang CY, Ezekowitz RA . Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple alpha-helical coiled-coil. Nat Struct Biol 1994; 1: 789–794.

    Article  CAS  PubMed  Google Scholar 

  8. Hakansson K, Lim NK, Hoppe HJ, Reid KB . Crystal structure of the trimeric alpha-helical coiled-coil and the three lectin domains of human lung surfactant protein D. Structure 1999; 7: 255–264.

    Article  CAS  PubMed  Google Scholar 

  9. Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA . Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 1991; 254: 1608–1615.

    Article  CAS  PubMed  Google Scholar 

  10. Wallis R, Drickamer K . Asymmetry adjacent to the collagen-like domain in rat liver mannose-binding protein. Biochem J 1997; 325: 391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yokota Y, Arai T, Kawasaki T . Oligomeric structures required for complement activation of serum mannan-binding proteins. J Biochem 1995; 117: 414–419.

    Article  CAS  PubMed  Google Scholar 

  12. Fraser IP, Koziel H, Ezekowitz RA . The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol 1998; 10: 363–372.

    Article  CAS  PubMed  Google Scholar 

  13. Zuo DM, Zhang LY, Lu X, Liu Y, Chen ZL . Protective role of mouse MBL-C on intestinal mucosa during Shigella flexneri invasion. Int Immunol 2009; 21: 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  14. Thompson C . Protein proves to be a key link in innate immunity. Science 1995; 269: 301–302.

    Article  CAS  PubMed  Google Scholar 

  15. Hoebe K, Janssen E, Beutler B . The interface between innate and adaptive immunity. Nat Immunol 2004; 5: 971–974.

    Article  CAS  PubMed  Google Scholar 

  16. Underhill DM, Ozinsky A . Phagocytosis of microbes: complexity in action. Annu Rev Immunol 2002; 20: 825–852.

    Article  CAS  PubMed  Google Scholar 

  17. Savill J, Dransfield I, Gregory C, Haslett C . A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2002; 2: 965–975.

    Article  CAS  PubMed  Google Scholar 

  18. Janeway CA Jr . Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989; 54 Pt 1: 1–13.

    Article  CAS  PubMed  Google Scholar 

  19. Pasare C, Medzhitov R . Toll-like receptors: linking innate and adaptive immunity. Microbes Infect 2004; 6: 1382–1387.

    Article  CAS  PubMed  Google Scholar 

  20. Feng GJ, Goodridge HS, Harnett MM, Wei XQ, Nikolaev AV, Higson AP et al. Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macrophage IL-12 production by targeting ERK MAP kinase. J Immunol 1999; 163: 6403–6412.

    CAS  PubMed  Google Scholar 

  21. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F . Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999; 274: 10689–10692.

    Article  CAS  PubMed  Google Scholar 

  22. Macdonald SL, Downing I, Atkinson AP, Gallagher RC, Turner ML, Kilpatrick DC . Dendritic cells previously exposed to mannan-binding lectin (MBL) enhance cytokine production in allogeneic mononuclear cell cultures. Hum Immunol 2010; 71: 1077–1083.

    Article  CAS  PubMed  Google Scholar 

  23. Chaka W, Verheul AF, Vaishnav VV, Cherniak R, Scharringa J, Verhoef J et al. Induction of TNF-alpha in human peripheral blood mononuclear cells by the mannoprotein of Cryptococcus neoformans involves human mannose binding protein. J Immunol 1997; 159: 2979–2985.

    CAS  PubMed  Google Scholar 

  24. Soell M, Diab M, Haan-Archipoff G, Beretz A, Herbelin C, Poutrel B et al. Capsular polysaccharide types 5 and 8 of Staphylococcus aureus bind specifically to human epithelial (KB) cells, endothelial cells, and monocytes and induce release of cytokines. Infect Immun 1995; 63: 1380–1386.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghezzi MC, Raponi G, Angeletti S, Mancini C . Serum-mediated enhancement of TNF-alpha release by human monocytes stimulated with the yeast form of Candida albicans. J Infect Dis 1998; 178: 1743–1749.

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi K, Gordon J, Liu H, Sastry KN, Epstein JE, Motwani M et al. Lack of mannose-binding lectin-A enhances survival in a mouse model of acute septic peritonitis. Microbes Infect 2002; 4: 773–784.

    Article  CAS  PubMed  Google Scholar 

  27. Korb LC, Ahearn JM . C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 1997; 158: 4525–4528.

    CAS  PubMed  Google Scholar 

  28. Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM . The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol 2001; 166: 3231–3239.

    Article  CAS  PubMed  Google Scholar 

  29. Downing I, MacDonald SL, Turner ML, Kilpatrick DC . Detection of an autologous ligand for mannan-binding lectin on human B lymphocytes. Scand J Immunol 2005; 62: 507–514.

    Article  CAS  PubMed  Google Scholar 

  30. Downing I, Koch C, Kilpatrick DC . Immature dendritic cells possess a sugar-sensitive receptor for human mannan-binding lectin. Immunology 2003; 109: 360–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fraser DA, Bohlson SS, Jasinskiene N, Rawal N, Palmarini G, Ruiz S et al. C1q and MBL, components of the innate immune system, influence monocyte cytokine expression. J Leukoc Biol 2006; 80: 107–116.

    Article  CAS  PubMed  Google Scholar 

  32. Bohlson SS, Fraser DA, Tenner AJ . Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol 2007; 44: 33–43.

    Article  CAS  PubMed  Google Scholar 

  33. Shimizu T, Nishitani C, Mitsuzawa H, Ariki S, Takahashi M, Ohtani K et al. Mannose binding lectin and lung collectins interact with Toll-like receptor 4 and MD-2 by different mechanisms. Biochim Biophys Acta 2009; 1790: 1705–1710.

    Article  CAS  PubMed  Google Scholar 

  34. Chiba H, Sano H, Iwaki D, Murakami S, Mitsuzawa H, Takahashi T et al. Rat mannose-binding protein a binds CD14. Infect Immun 2001; 69: 1587–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gringhuis SI, Dunnen den J, Litjens M, Het Hof van B, Kooyk van Y, Geijtenbeek TB . C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 2007; 26: 605–616.

    Article  CAS  PubMed  Google Scholar 

  36. Tan SM, Chung MC, Kon OL, Thiel S, Lee SH, Lu J . Improvements on the purification of mannan-binding lectin and demonstration of its Ca2+-independent association with a C1s-like serine protease. Biochem J 1996; 19 ( Pt 2): 329–332.

    Article  Google Scholar 

  37. Dumestre-Perard C, Ponard D, Arlaud GJ, Monnier N, Sim RB, Colomb MG . Evaluation and clinical interest of mannan binding lectin function in human plasma. Mol Immunol 2002; 39: 465–473.

    Article  CAS  PubMed  Google Scholar 

  38. Kilpatrick DC, Fujita T, Matsushita M . P35, an opsonic lectin of the ficolin family, in human blood from neonates, normal adults, and recurrent miscarriage patients. Immunol Lett 1999; 67: 109–112.

    Article  CAS  PubMed  Google Scholar 

  39. Perona-Wright G, Anderton SM, Howie SE, Gray D . IL-10 permits transient activation of dendritic cells to tolerize T cells and protect from central nervous system autoimmune disease. Int Immunol 2007; 18( 9): 1033–1034.

    Google Scholar 

  40. Joyner JL, Augustine NH, Taylor KA, La Pine TR, Hill HR . Effects of group B streptococci on cord and adult mononuclear cell interleukin-12 and interferon-gamma mRNA accumulation and protein secretion. J Infect Dis 2000; 182: 974–977.

    Article  CAS  PubMed  Google Scholar 

  41. Ma W, Gee K, Lim W, Chambers K, Angel JB, Kozlowski M et al. Dexamethasone inhibits IL-12p40 production in lipopolysaccharide-stimulated human monocytic cells by down-regulating the activity of c-Jun N-terminal kinase, the activation protein-1, and NF-kappa B transcription factors. J Immunol 2004; 172: 318–330.

    Article  CAS  PubMed  Google Scholar 

  42. Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ et al. Bacterial lipopolysaccharide activates NF-kappaB through Toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 2000; 275: 11058–11063.

    Article  CAS  PubMed  Google Scholar 

  43. Hyakushima N, Mitsuzawa H, Nishitani C, Sano H, Kuronuma K, Konishi M et al. Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling. J Immunol 2004; 173: 6949–6954.

    Article  CAS  PubMed  Google Scholar 

  44. Murakami S, Iwaki D, Mitsuzawa H, Sano H, Takahashi H, Voelker DR et al. Surfactant protein A inhibits peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macrophages by direct interaction with Toll-like receptor 2. J Biol Chem 2002; 277: 6830–6837.

    Article  CAS  PubMed  Google Scholar 

  45. Wang JH, Doyle M, Manning BJ, Wu Di Q, Blankson S, Redmond HP . Induction of bacterial lipoprotein tolerance is associated with suppression of Toll-like receptor 2 expression. J Biol Chem 2002; 277: 36068–36075.

    Article  CAS  PubMed  Google Scholar 

  46. Li CH, Wang JH, Redmond HP . Bacterial lipoprotein-induced self-tolerance and cross-tolerance to LPS are associated with reduced IRAK-1 expression and MyD88-IRAK complex formation. J Leukoc Biol 2006; 79: 867–875.

    Article  CAS  PubMed  Google Scholar 

  47. Hajishengallis G, Martin M, Schifferle RE, Genco RJ . Counteracting interactions between lipopolysaccharide molecules with differential activation of Toll-like receptors. Infect Immun 2002; 70: 6658–6664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Freudenberg MA, Keppler D, Galanos C . Requirement for lipopolysaccharide-responsive macrophages in galactosamine-induced sensitization to endotoxin. Infect Immun 1986; 51: 891–895.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Michalek SM, Moore RN, McGhee JR, Rosenstreich DL, Mergenhagen SE . The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxim. J Infect Dis 1980; 141: 55–63.

    Article  CAS  PubMed  Google Scholar 

  50. Ulevitch RJ, Tobias PS . Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995; 13: 437–457.

    Article  CAS  PubMed  Google Scholar 

  51. Ziegler-Heitbrock HW, Wedel A, Schraut W, Strobel M, Wendelgass P, Sternsdorf T et al. Tolerance to lipopolysaccharide involves mobilization of nuclear factor kappa B with predominance of p50 homodimers. J Biol Chem 1994; 269: 17001–17004.

    CAS  PubMed  Google Scholar 

  52. Mizel SB, Snipes JA . Gram-negative flagellin-induced self-tolerance is associated with a block in interleukin-1 receptor-associated kinase release from Toll-like receptor 5. J Biol Chem 2002; 277: 22414–22420.

    Article  CAS  PubMed  Google Scholar 

  53. Turner MW, Hamvas RM . Mannose-binding lectin: structure, function, genetics and disease associations. Rev Immunogenet 2000; 2: 305–322.

    CAS  PubMed  Google Scholar 

  54. Thiel S, Holmskov U, Hviid L, Laursen SB, Jensenius JC . The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clin Exp Immunol 1992; 90: 31–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB . Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1995; 1: 237–243.

    Article  CAS  PubMed  Google Scholar 

  56. Malhotra R, Willis AC, Lopez Bernal A, Thiel S, Sim RB . Mannan-binding protein levels in human amniotic fluid during gestation and its interaction with collectin receptor from amnion cells. Immunology 1994; 82: 439–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gomi K, Tokue Y, Kobayashi T, Takahashi H, Watanabe, Fujita T et al. Mannose-binding lectin gene polymorphism is a modulating factor in repeated respiratory infections. Chest 2004; 126: 95–99.

    Article  CAS  PubMed  Google Scholar 

  58. Babula O, Lazdane G, Kroica J, Ledger WJ, Witkin SS . Relation between recurrent vulvovaginal candidiasis, vaginal concentrations of mannose-binding lectin, and a mannose-binding lectin gene polymorphism in Latvian women. Clin Infect Dis 2003; 37: 733–737.

    Article  PubMed  Google Scholar 

  59. Pellis V, de Seta F, Crovella S, Bossi F, Bulla R, Guaschino S et al. Mannose binding lectin and C3 act as recognition molecules for infectious agents in the vagina. Clin Exp Immunol 2005; 139: 120–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ip WK, Takahashi K, Moore KJ, Stuart LM, Ezekowitz RA . Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome. J Exp Med 2008; 205: 169–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ip WK, Takahashi K, Ezekowitz RA, Stuart LM . Mannose-binding lectin and innate immunity. Immunol Rev 2009; 230: 9–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (30972679). Special thanks are given to Professors Tianyun Wang, Wenming Yong and Weiren Dong for their dedicated revision of the paper.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Chen, Y., Zhang, Y. et al. Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells. Cell Mol Immunol 8, 265–275 (2011). https://doi.org/10.1038/cmi.2011.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.1

Keywords

This article is cited by

Search

Quick links