Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

IFN-α production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways

Abstract

Understanding the defense mechanisms of the host of an organism is important for infection control. In previous studies, we demonstrated that interferon-α (IFN-α), but not IL-12, was produced by human peripheral blood mononuclear cells infected with varicella-zoster virus (VZV). Here, we investigated what kind of cell(s) and which signal molecule(s) are involved in IFN-α production. Using cell isolation and ELISA, we found that plasmacytoid dendritic cells (pDCs) were responsible for IFN-α production during VZV infection. We also found that Toll-like receptor 9 (TLR9) was involved in VZV-induced IFN-α production because inhibitory CpG oligodeoxynucleotide inhibited IFN-α production. UV-inactivated VZV-induced IFN-α production was lower than that of active VZV, indicating another TLR9-independent pathway. Further studies demonstrated that double-stranded RNA-dependent protein kinase, but not DNA-dependent protein kinase was involved in VZV-induced IFN-α production. Together, these results suggest that pDCs play an important role in IFN-α production during VZV infection through TLR9-dependent and -independent pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA . Phylogenetic perspectives in innate immunity. Science 1999; 284: 1313–1318.

    Article  CAS  PubMed  Google Scholar 

  2. Barton GM, Medzhitov R . Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 2002; 14: 380–383.

    Article  CAS  PubMed  Google Scholar 

  3. O'Doherty U, Peng UM, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 1994; 82: 487–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD . Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 1999; 29: 2769–2778.

    Article  CAS  PubMed  Google Scholar 

  5. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN . Characterization of human blood dendritic cell subsets. Blood 2002; 100: 4512–4520.

    Article  CAS  PubMed  Google Scholar 

  6. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YL et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  PubMed  Google Scholar 

  7. Ueda Y, Hagihara M, Okamoto A, Higuchi A, Tanabe A, Hirabayashi K et al. Frequencies of dendritic cells (myeloid DC and plasmacytoid DC) and their ratio reduced in pregnant women: comparison with umbilical cord blood and normal healthy adults. Hum Immunol 2003; 64: 1144–1151.

    Article  PubMed  Google Scholar 

  8. Chehimi J, Campbell DE, Azzoni L, Bacheller D, Papasavvas E, Jerandi G et al. Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol 2002; 168: 4796–4801.

    Article  CAS  PubMed  Google Scholar 

  9. McKenna K, Beignon AS, Bhardwaj N . Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 2005; 79: 17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5: 919–923.

    Article  CAS  PubMed  Google Scholar 

  11. Feldman SB, Ferraro M, Zheng HM, Patel N, Gould-Fogerite S, Fitzgerald-Bocarsly P . Viral induction of low frequency interferon-alpha producing cells. Virology 1994; 204: 1–7.

    Article  CAS  PubMed  Google Scholar 

  12. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999; 284: 1835–1837.

    Article  CAS  PubMed  Google Scholar 

  13. Straus SE, Aulakh HS, Ruyechan WT, Hay J, Casey TA, Vande Woude GF et al. Structure of varicella-zoster virus DNA. J Virol 1981; 40: 516–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu HR, Chen RF, Hong KC, Bong CN, Lee WI, Kuo HC et al. IL-12 independent polarization of Th1 reaction in human mononuclear cells with varicella-zoster virus infection. Eur J Immunol 2005; 35: 3664–3672.

    Article  CAS  PubMed  Google Scholar 

  15. Yu HR, Chang JC, Chen RF, Chuang H, Hong KC, Wang L et al. Different antigens trigger different Th1/Th2 reactions in neonatal mononuclear cells (MNCs) relating to T-bet/GATA-3 expression. J Leukoc Biol 2003; 74: 952–958.

    Article  CAS  PubMed  Google Scholar 

  16. Yang KD, Liou WY, Lee CS, Chu ML, Shaio MF . Effects of phenobarbitol on leukocyte activation: membrane potential, actin polymerization, chemotaxis, respiratory burst, cytokine production, and lymphocyte proliferation. J Leukoc Biol 1992; 52: 151–156.

    Article  CAS  PubMed  Google Scholar 

  17. Ashman RF, Lenert P . Structural requirements and applications of inhibitory oligodeoxyribonucleotides. Immunol Res 2007; 39: 4–14.

    Article  CAS  PubMed  Google Scholar 

  18. Malmgaard L, Melchjorsen J, Bowie AG, Mogensen SC, Paludan SR . Viral activation of macrophages through TLR-dependent and -independent pathways. J Immunol 2004; 173: 6890–6898.

    Article  CAS  PubMed  Google Scholar 

  19. Der SD, Lau AS . Involvement of the double-stranded-RNA-dependent kinase PKR in interferon expression and interferon-mediated antiviral activity. Proc Natl Acad Sci USA 1995; 92: 8841–8845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chu WM, Ostertag D, Li ZW, Chang L, Chen Y, Hu Y et al. JNK2 and IKKbeta are required for activating the innate response to viral infection. Immunity 1999; 11: 721–731.

    Article  CAS  PubMed  Google Scholar 

  21. Akira S, Hemmi H . Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 2003; 85: 85–95.

    Article  CAS  PubMed  Google Scholar 

  22. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303: 1526–1529.

    Article  CAS  PubMed  Google Scholar 

  23. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C . Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303: 1529–1531.

    Article  CAS  PubMed  Google Scholar 

  24. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 2004; 101: 5598–5603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med 2001; 194: 863–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen JI, Brunell PA, Straus SE, Krause PR . Recent advances in varicella-zoster virus infection. Ann Intern Med 1999; 130: 922–932.

    Article  CAS  PubMed  Google Scholar 

  27. Lin TY, Huang YC, Ning HC, Hsueh C . Oral acyclovir prophylaxis of varicella after intimate contact. Pediatr Infect Dis 1997; 16: 1162–1165.

    Article  CAS  Google Scholar 

  28. Grose C . Variation on a theme by Fenner: the pathogenesis of chickenpox. Pediatrics 1981; 68: 735–737.

    CAS  PubMed  Google Scholar 

  29. Ozaki T, Ichikawa T, Matsui Y, Nagai T, Asano Y, Yamanishi K et al. Viremic phase in nonimmunocompromised children with varicella. J Pediatr 1984; 104: 85–87.

    Article  CAS  PubMed  Google Scholar 

  30. Ku CC, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM . Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med 2004; 200: 917–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ku CC, Besser J, Abendroth A, Grose C, Arvin AM . Varicella-Zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol 2005; 79: 2651–2658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hochrein H, Schlatter B, O'Keeffe M, Wagner C, Schmitz F, Schiemann M et al. Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci USA 2004; 101: 11416–11421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heim MH . RIG-I: an essential regulator of virus-induced interferon production. J Hepatol 2005; 42: 431–433.

    Article  CAS  PubMed  Google Scholar 

  34. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5: 730–737.

    Article  CAS  PubMed  Google Scholar 

  35. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006; 441: 101–105.

    Article  CAS  PubMed  Google Scholar 

  36. Wagner H, Bauer S . All is not Toll: new pathways in DNA recognition. J Exp Med 2006; 203: 265–268.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Akira S, Uematsu S, Takeuchi O . Pathogen recognition and innate immunity. Cell 2006; 124: 783–801.

    Article  CAS  PubMed  Google Scholar 

  38. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006: 7: 40–48.

    Article  CAS  PubMed  Google Scholar 

  39. Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S . Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med 2005; 202: 1333–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chu W, Gong X, Li Z, Takabayashi K, Ouyang H, Chen Y et al. DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 2000; 103: 909–918.

    Article  CAS  PubMed  Google Scholar 

  41. Dragoi AM, Fu X, Ivanov S, Zhang P, Sheng L, Wu D et al. DNA-PKcs, but not TLR9, is required for activation of Akt by CpG-DNA. EMBO J 2005; 24: 779–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karpova AY, Trost M, Murray JM, Cantley LC, Howley PM . Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proc Natl Acad Sci USA 2002; 99: 2818–2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hemmi H, Kaisho T, Takeda K, Akira S . The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J Immunol 2003; 170: 3059–3064.

    Article  CAS  PubMed  Google Scholar 

  44. Ishii KJ, Takeshita F, Gursel I, Gursel M, Conover J, Nussenzweig A et al. Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation. J Exp Med 2002; 196: 269–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hornung V, Schlender J, Guenthner-Biller M, Rothenfusser S, Endres S, Conzelmann KK et al. Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J Immunol 2004; 173: 5935–5943.

    Article  CAS  PubMed  Google Scholar 

  46. Jacobs BL, Langland JO . When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 1996; 219: 339–349.

    Article  CAS  PubMed  Google Scholar 

  47. Carpentier PA, Williams BR, Miller SD . Distinct roles of protein kinase R and Toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia 2007; 55: 239–252.

    Article  PubMed  Google Scholar 

  48. Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW . Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol 2005; 79: 12658–12666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants NSC 94-2314-B-182A-101 (H R Yu) and NSC 98-2314-B-182A-004-MY3 (H R Yu) from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuender D Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HR., Huang, HC., Kuo, HC. et al. IFN-α production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell Mol Immunol 8, 181–188 (2011). https://doi.org/10.1038/cmi.2010.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.84

Keywords

This article is cited by

Search

Quick links