Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Id1 has a physiological role in regulating early B lymphopoiesis

Abstract

Basic helix–loop–helix E proteins play critical roles in B-cell development by stimulating B cell-specific gene expression and immunoglobulin gene rearrangement. The function of E proteins can be effectively suppressed by their naturally occurring inhibitors, Id1 to 4. Ectopic expression of Id1 has been shown to block B-cell development at the early pro-B cell stage. However, whether Id1 plays a physiological role in controlling B lymphopoiesis was not known. Although Id1-deficient mice do not exhibit significant abnormalities in steady-state B lymphopoiesis, we detected more robust B-cell engraftment in transplant recipients of Id1-deficient bone marrow compared to those of wild-type donor cells. In culture, Id1 ablation dramatically enhances B-lineage cell production without any marked effects on myeloid differentiation. Consistently, Id1 expression was found in pro-B but not pre-B cells as measured by enhanced green fluorescent protein (EGFP) fluorescence and by quantitative reverse transcription-PCR. Although loss of Id1 did not alter the number of B-cell colonies generated from whole bone marrow or the proliferation rate of developing B cells, B-cell colonies were detectable at a much earlier time point and the size of the colonies were larger. Therefore, we infer that Id1-deficient progenitors possess higher potential to differentiate to the pre-B cell stage when a proliferative burst occurs. Taken together, we present evidence to suggest that Id1 plays a physiological role in restraining the developmental progression, which may be important for proper B-cell differentiation in the bone marrow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241: 58–62.

    Article  CAS  PubMed  Google Scholar 

  2. Ikuta K, Weissman IL . Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 1992; 89: 1502–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sitnicka E, Bryder D, Theilgaard-Monch K, Buza-Vidas N, Adolfsson J, Jacobsen SE . Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 2002; 17: 463–472.

    Article  CAS  PubMed  Google Scholar 

  4. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 2005; 121: 295–306.

    Article  CAS  PubMed  Google Scholar 

  5. Igarashi H, Gregory SC, Yokota T, Sakaguchi N, Kincade PW . Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 2002; 17: 117–130.

    Article  CAS  PubMed  Google Scholar 

  6. Hardy RR, Kincade PW, Dorshkind K . The protean nature of cells in the B lymphocyte lineage. Immunity 2007; 26: 703–714.

    Article  CAS  PubMed  Google Scholar 

  7. Alt FW, Blackwell TK, DePinho RA, Reth MG, Yancopoulos GD . Regulation of genome rearrangement events during lymphocyte differentiation. Immunol Rev 1986; 89: 5–30.

    Article  CAS  PubMed  Google Scholar 

  8. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K . Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 1991; 173: 1213–1225.

    Article  CAS  PubMed  Google Scholar 

  9. Hardy RR . B-cell commitment: deciding on the players. Curr Opin Immunol 2003; 15: 158–165.

    Article  CAS  PubMed  Google Scholar 

  10. Melchers F, Haasner D, Grawunder U, Kalberer C, Karasuyama H, Winkler T et al. Roles of IgH and L chains and of surrogate H and L chains in the development of cells of the B lymphocyte lineage. Annu Rev Immunol 1994; 12: 209–225.

    Article  CAS  PubMed  Google Scholar 

  11. Martensson IL, Ceredig R . Review article: role of the surrogate light chain and the pre-B-cell receptor in mouse B-cell development. Immunology 2000; 101: 435–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herzog S, Reth M, Jumaa H . Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 2009; 9: 195–205.

    Article  CAS  PubMed  Google Scholar 

  13. Martensson IL, Keenan RA, Licence S . The pre-B-cell receptor. Curr Opin Immunol 2007; 19: 137–142.

    Article  CAS  PubMed  Google Scholar 

  14. Gold MR . B cell development: important work for ERK. Immunity 2008; 28: 488–490.

    Article  CAS  PubMed  Google Scholar 

  15. Fleming HE, Paige CJ . Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an ERK/MAP kinase-dependent pathway. Immunity 2001; 15: 521–531.

    Article  CAS  PubMed  Google Scholar 

  16. Milne CD, Paige CJ . IL-7: a key regulator of B lymphopoiesis. Semin Immunol 2006; 18: 20–30.

    Article  CAS  PubMed  Google Scholar 

  17. Busslinger M . Transcriptional control of early B cell development. Annu Rev Immunol 2004; 22: 55–79.

    Article  CAS  PubMed  Google Scholar 

  18. Nutt SL, Kee BL . The transcriptional regulation of B cell lineage commitment. Immunity 2007; 26: 715–725.

    Article  CAS  PubMed  Google Scholar 

  19. Murre C . Regulation and function of the E2A proteins in B cell development. Adv Exp Med Biol 2007; 596: 1–7.

    Article  PubMed  Google Scholar 

  20. Kee BL . E and ID proteins branch out. Nat Rev Immunol 2009; 9: 175–184.

    Article  CAS  PubMed  Google Scholar 

  21. Lazorchak A, Jones ME, Zhuang Y . New insights into E-protein function in lymphocyte development. Trends Immunol 2005; 26: 334–338.

    Article  CAS  PubMed  Google Scholar 

  22. Sun XH . Multitasking of helix–loop–helix proteins in lymphopoiesis. Adv Immunol 2004; 84: 43–77.

    Article  CAS  PubMed  Google Scholar 

  23. Bain G, Robanus Maandag EC, te Riele HP, Feeney AJ, Sheehy A, Schlissel M et al. Both E12 and E47 allow commitment to the B cell lineage. Immunity 1997; 6: 145–154.

    Article  CAS  PubMed  Google Scholar 

  24. Kee BL, Murre C . Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix–loop–helix transcription factor E12. J Exp Med 1998; 188: 699–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hagman J, Lukin K . Transcription factors drive B cell development. Curr Opin Immunol 2006; 18: 127–134.

    Article  CAS  PubMed  Google Scholar 

  26. O'Riordan M, Grosschedl R . Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 1999; 11: 21–31.

    Article  CAS  PubMed  Google Scholar 

  27. Greenbaum S, Zhuang Y . Identification of E2A target genes in B lymphocyte development by using a gene tagging-based chromatin immunoprecipitation system. Proc Natl Acad Sci USA 2002; 99: 15030–15035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh H, Medina KL, Pongubala JM . Contingent gene regulatory networks and B cell fate specification. Proc Natl Acad Sci USA 2005; 102: 4949–4953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goebel P, Janney N, Valenzuela JR, Romanow WJ, Murre C, Feeney AJ . Localized gene-specific induction of accessibility to V(D)J recombination induced by E2A and early B cell factor in nonlymphoid cells. J Exp Med 2001; 194: 645–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu LY, Lauring J, Liang HE, Greenbaum S, Cado D, Zhuang Y et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 2003; 19: 105–117.

    Article  CAS  PubMed  Google Scholar 

  31. Choi JK, Shen CP, Radomska HS, Eckhardt LA, Kadesch T . E47 activates the Ig-heavy chain and TdT loci in non-B cells. EMBO J 1996; 15: 5014–5021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Romanow WJ, Langerak AW, Goebel P, Wolvers-Tettero IL, van Dongen JJ, Feeney AJ et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol Cell 2000; 5: 343–353.

    Article  CAS  PubMed  Google Scholar 

  33. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H . Τhe protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell 1990; 61: 49–59.

    Article  CAS  PubMed  Google Scholar 

  34. Sun XH, Copeland NG, Jenkins NA, Baltimore D . Id proteins, Id1 and Id2, selectively inhibit DNA binding by one class of helix–loop–helix proteins. Mol Cell Biol 1991; 11: 5603–5611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Riechmann V, van Cruchten I, Sablitzky F . The expression pattern of Id4, a novel dominant negative helix–loop–helix protein, is distinct from Id1, Id2 and Id3. Nucl Acids Res 1994; 22: 749–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Christy BA, Sanders LK, Lau LF, Copeland NG, Jenkins NA, Nathans D . An Id-related helix–loop–helix protein encoded by a growth factor-inducible gene. Proc Natl Acad Sci USA 1991; 88: 1815–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun XH . Constitutive expression of the Id1 gene impairs mouse B cell development. Cell 1994; 79: 893–900.

    Article  CAS  PubMed  Google Scholar 

  38. Ji M, Li H, Suh HC, Klarmann KD, Yokota Y, Keller JR . Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood 2008; 112: 1068–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaleco AC, Stegmann AP, Heemskerk MH, Couwenberg F, Bakker AQ, Weijer K et al. Genetic modification of human B-cell development: B-cell development is inhibited by the dominant negative helix loop helix factor Id3. Blood 1999; 94: 2637–2646.

    CAS  PubMed  Google Scholar 

  40. Cochrane SW, Zhao Y, Welner RS, Sun XH . Balance between Id and E proteins regulates myeloid-versus-lymphoid lineage decisions. Blood 2009; 113: 1016–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leeanansaksiri W, Wang H, Gooya JM, Renn K, Abshari M, Tsai S et al. IL-3 induces inhibitor of DNA-binding protein-1 in hemopoietic progenitor cells and promotes myeloid cell development. J Immunol 2005; 174: 7014–7021.

    Article  CAS  PubMed  Google Scholar 

  42. Dias S, Mansson R, Gurbuxani S, Sigvardsson M, Kee BL . E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity 2008; 29: 217–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perry SS, Zhao Y, Nie L, Cochrane SW, Huang Z, Sun XH . Id1, but not Id3, directs long-term repopulating hematopoietic stem-cell maintenance. Blood 2007; 110: 2351–2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perry SS, Welner RS, Kouro T, Kincade PW, Sun XH . Primitive lymphoid progenitors in bone marrow with T lineage reconstituting potential. J Immunol 2006; 177: 2880–2887.

    Article  CAS  PubMed  Google Scholar 

  45. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix–loop–helix inhibitor Id2. Nature 1999; 397: 702–706.

    Article  CAS  PubMed  Google Scholar 

  46. Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y . High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol 1997; 17: 7317–7327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Melchers F . Control of the sizes and contents of precursor B cell repertoires in bone marrow. Ciba Found Symp 1997; 204: 172–182.

    CAS  PubMed  Google Scholar 

  48. Martensson IL, Rolink A, Melchers F, Mundt C, Licence S, Shimizu T . The pre-B cell receptor and its role in proliferation and Ig heavy chain allelic exclusion. Semin Immunol 2002; 14: 335–342.

    Article  CAS  PubMed  Google Scholar 

  49. Xu M, Nie L, Kim SH, Sun XH . STAT5-induced Id-1 transcription involves recruitment of HDAC1 and deacetylation of C/EBPbeta. EMBO J 2003; 22: 893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saisanit S, Sun XH . Regulation of the pro-B-cell-specific enhancer of the Id1 gene involves the C/EBP family of proteins. Mol Cell Biol 1997; 17: 844–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leonard WJ . Role of Jak kinases and STATs in cytokine signal transduction. Int J Hematol 2001; 73: 271–277.

    Article  CAS  PubMed  Google Scholar 

  52. Murray PJ . The JAK-STAT signaling pathway: input and output integration. J Immunol 2007; 178: 2623–2629.

    Article  CAS  PubMed  Google Scholar 

  53. Tournay O, Benezra R . Transcription of the dominant-negative helix–loop–helix protein Id1 is regulated by a protein complex containing the immediate-early response gene Egr-1. Mol Cell Biol 1996; 16: 2418–2430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peverali FA, Ramqvist T, Saffrich R, Pepperkik R, Barone MV, Philipson L . Regulation of G1 progression by E2A and Id helix–loop–helix proteins. EMBO J 1994; 13: 4291–4301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prabhu S, Ignatova A, Park ST, Sun XH . Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and ID proteins. Mol Cell Biol 1997; 17: 5888–5896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nie L, Xu M, Vladimirova A, Sun XH . Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J 2003; 22: 5780–5792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 2006; 7: 207–215.

    Article  CAS  PubMed  Google Scholar 

  58. Bookout AL, Mangelsdorf DJ . Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal 2003; 1: e012.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Carol Webb for critical reading of the manuscript and Dr Hong-Cheng Wang for assistance in data analyses. We are grateful to the flow cytometry facility at the Oklahoma Medical Research Foundation for technical support. This work was supported by the grant to XHS (NIH AI56129). XHS holds the Lew and Myra Ward Chair in Biomedical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cochrane, S., Zhao, Y., Perry, S. et al. Id1 has a physiological role in regulating early B lymphopoiesis. Cell Mol Immunol 8, 41–49 (2011). https://doi.org/10.1038/cmi.2010.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.58

Keywords

Search

Quick links