Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

O6-alkylguanine-DNA-alkyltransferase activity and nitrosourea sensitivity in human cancer cell lines

Abstract

The DNA repair enzyme, O6-alkylguanine-DNA-alkyltransferase (ATase), is thought to be the principal mechanism controlling resistance to nitrosoureas and related alkylating agents. We compared the sensitivities of five human testis and five bladder tumour cell lines to two nitrosoureas (N-nitroso-N-methylurea (MNU) and mitozolomide) with cellular levels of ATase. Enzyme levels ranged from 3 to 206 fmol mg-1 protein (0.1 x 10(4) to 5.1 x 10(4) molecules/cell) in the testis lines and from 11 to 603 fmol mg-1 (0.4 x 10(4) to 9.1 x 10(4) molecules/cell) in the bladder lines. Based on IC50s in an MTT assay, the testis tumour cell lines were, on average, four times more sensitive to MNU and six times more sensitive to mitozolomide than the bladder cell lines. The cytotoxicities of MNU and mitozolomide were closely related (R = 0.9). In the testis cell lines ATase activity (molecules/cell) was related to IC50s for mitozolomide (R = 0.97) but not MNU (R = 0.78). In the bladder cell lines and overall, ATase activity correlated with cellular sensitivity to neither agent. Relatively high levels of resistance occurred in cells expressing low levels of ATase, and amongst cell lines expressing high levels of ATase, large differences in IC50s were observed. These results support the suggestion that resistance to nitrosoureas can be mediated by mechanisms other than ATase and that at relatively high levels of expression, ATase does not confer resistance in proportion to its activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, M., Masters, J. & Margison, G. O6-alkylguanine-DNA-alkyltransferase activity and nitrosourea sensitivity in human cancer cell lines. Br J Cancer 66, 840–843 (1992). https://doi.org/10.1038/bjc.1992.370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1992.370

This article is cited by

Search

Quick links