Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone

Abstract

Objectives:

To study the association between angiopoietin 2 (Ang2) concentrations in tracheal aspirates (TAs) and adverse outcome (bronchopulmonary dysplasia (BPD)/death) in ventilated premature infants (VPIs) and modulation of Ang2 concentrations with dexamethasone (Dex) use.

Study Design:

Serial TA samples were collected on days 1, 3, 5 and 7, and Ang2 concentrations were measured. Ang2 TA concentrations were compared prior to and after 48 to 72 h of using Dex.

Result:

A total of 151 TA samples were collected from 60 VPIs. BPD was defined as the oxygen requirement at 36 weeks postmenstrual age (PMA). Twelve infants (mean±s.d.) (gestational age (GA) 26.5±2.1 weeks, birth weight (BW) 913±230 g) had no BPD, 32 infants (GA 25.8±1.4 weeks, BW 768±157 g) developed BPD and 16 infants (GA 24.5±1.1 weeks, BW 710±143 g) died before 36 weeks PMA. Ang2 concentrations were significantly lower in infants with no BPD (median, 25th and 75th percentile) (157, 16 and 218 pg mg−1) compared with those who developed BPD (234, 138 and 338 pg mg−1, P=0.03) or BPD and/or death (234, 157 and 347 pg mg−1, P=0.017), in the first week of life. Twenty-six VPIs (BW 719±136 g, GA 25.1±1.3 weeks) received 27 courses of Dex. Ang2 concentrations before starting Dex were 202, 137 and 278 pg mg−1 and significantly decreased to 144, 0 and 224 pg mg−1 after therapy (P=0.007).

Conclusions:

Higher Ang2 concentrations in TAs are associated with the development of BPD or death in VPIs. Dex use suppressed Ang2 concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Fanaroff AA, Hack M, Walsh MC . The NICHD neonatal research network: changes in practice and outcomes during the first 15 years. Semin Perinatol 2003; 27: 281–287.

    Article  Google Scholar 

  2. Bhandari A, Bhandari V . Pathogenesis, pathology and pathophysiology of pulmonary sequelae of bronchopulmonary dysplasia in premature infants. Front Biosci 2003; 8: e370–380.

    Article  CAS  Google Scholar 

  3. Bhandari A, Bhandari V . Bronchopulmonary dysplasia: an update. Indian J Pediatr 2007; 74: 73–77.

    Article  Google Scholar 

  4. Hamilton BE, Martin JA, Sutton PD . Births: preliminary data for 2003. Natl Vital Stat Rep 2004; 53: 1–17.

    CAS  PubMed  Google Scholar 

  5. Akram Khan M, Kuzma-O’Reilly B, Brodsky NL, Bhandari V . Site-specific characteristics of infants developing bronchopulmonary dysplasia. J Perinatol 2006; 26: 428–435.

    Article  CAS  Google Scholar 

  6. Bhandari V, Bizzarro MJ, Shetty A, Zhong X, Page GP, Zhang H et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics 2006; 117: 1901–1906.

    Article  Google Scholar 

  7. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J . Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–248.

    Article  CAS  Google Scholar 

  8. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002; 3: 411–423.

    Article  CAS  Google Scholar 

  9. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 2006; 12: 235–239.

    Article  CAS  Google Scholar 

  10. Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 2006; 3: e46.

    Article  Google Scholar 

  11. Orfanos SE, Kotanidou A, Glynos C, Athanasiou C, Tsigkos S, Dimopoulou I et al. Angiopoietin-2 is increased in severe sepsis: correlation with inflammatory mediators. Crit Care Med 2007; 35: 199–206.

    Article  CAS  Google Scholar 

  12. Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 2006; 12: 1286–1293.

    Article  CAS  Google Scholar 

  13. Fiedler U, Augustin HG . Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 2006; 27: 552–558.

    Article  CAS  Google Scholar 

  14. Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G et al. Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 2005; 314: 738–744.

    Article  CAS  Google Scholar 

  15. Lemieux C, Maliba R, Favier J, Theoret JF, Merhi Y, Sirois MG . Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood 2005; 105: 1523–1530.

    Article  CAS  Google Scholar 

  16. Gupta GK, Cole CH, Abbasi S, Demissie S, Njinimbam C, Nielsen HC et al. Effects of early inhaled beclomethasone therapy on tracheal aspirate inflammatory mediators IL-8 and IL-1ra in ventilated preterm infants at risk for bronchopulmonary dysplasia. Pediatr Pulmonol 2000; 30: 275–281.

    Article  CAS  Google Scholar 

  17. Munshi UK, Niu JO, Siddiq MM, Parton LA . Elevation of interleukin-8 and interleukin-6 precedes the influx of neutrophils in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Pediatr Pulmonol 1997; 24: 331–336.

    Article  CAS  Google Scholar 

  18. Tullus K, Noack GW, Burman LG, Nilsson R, Wretlind B, Brauner A . Elevated cytokine levels in tracheobronchial aspirate fluids from ventilator treated neonates with bronchopulmonary dysplasia. Eur J Pediatr 1996; 155: 112–116.

    Article  CAS  Google Scholar 

  19. Kojima T, Sasai M, Kobayashi Y . Increased soluble ICAM-1 in tracheal aspirates of infants with bronchopulmonary dysplasia. Lancet 1993; 342: 1023–1024.

    Article  CAS  Google Scholar 

  20. Kotecha S, Chan B, Azam N, Silverman M, Shaw RJ . Increase in interleukin-8 and soluble intercellular adhesion molecule-1 in bronchoalveolar lavage fluid from premature infants who develop chronic lung disease. Arch Dis Child Fetal Neonatal Ed 1995; 72: F90–F96.

    Article  CAS  Google Scholar 

  21. Kotecha S, Silverman M, Shaw RJ, Klein N . Soluble L-selectin concentration in bronchoalveolar lavage fluid obtained from infants who develop chronic lung disease of prematurity. Arch Dis Child Fetal Neonatal Ed 1998; 78: F143–F147.

    Article  CAS  Google Scholar 

  22. Jonsson B, Tullus K, Brauner A, Lu Y, Noack G . Early increase of TNF alpha and IL-6 in tracheobronchial aspirate fluid indicator of subsequent chronic lung disease in preterm infants. Arch Dis Child Fetal Neonatal Ed 1997; 77: F198–F201.

    Article  CAS  Google Scholar 

  23. Kotecha S, Wilson L, Wangoo A, Silverman M, Shaw RJ . Increase in interleukin (IL)-1 beta and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung disease of prematurity. Pediatr Res 1996; 40: 250–256.

    Article  CAS  Google Scholar 

  24. Niu JO, Munshi UK, Siddiq MM, Parton LA . Early increase in endothelin-1 in tracheal aspirates of preterm infants: correlation with bronchopulmonary dysplasia. J Pediatr 1998; 132: 965–970.

    Article  CAS  Google Scholar 

  25. Choi CW, Kim BI, Kim HS, Park JD, Choi JH, Son DW . Increase of interleukin-6 in tracheal aspirate at birth: a predictor of subsequent bronchopulmonary dysplasia in preterm infants. Acta Paediatr 2006; 95: 38–43.

    Article  Google Scholar 

  26. Oei J, Lui K, Wang H, Henry R . Decreased interleukin-10 in tracheal aspirates from preterm infants developing chronic lung disease. Acta Paediatr 2002; 91: 1194–1199.

    Article  CAS  Google Scholar 

  27. Takasaki J, Ogawa Y . Interleukin 8 and granulocyte elastase alpha 1 proteinase inhibitor complex in the tracheobronchial aspirate of infants with chronic lung disease following inter-uterine infection. Acta Paediatr Jpn 1996; 38: 132–136.

    Article  CAS  Google Scholar 

  28. Baier RJ, Loggins J, Kruger TE . Monocyte chemoattractant protein-1 and interleukin-8 are increased in bronchopulmonary dysplasia: relation to isolation of Ureaplasma urealyticum. J Investig Med 2001; 49: 362–369.

    Article  CAS  Google Scholar 

  29. Baier RJ, Majid A, Parupia H, Loggins J, Kruger TE . CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia. Pediatr Pulmonol 2004; 37: 137–148.

    Article  Google Scholar 

  30. Kotecha S, Wangoo A, Silverman M, Shaw RJ . Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr 1996; 128: 464–469.

    Article  CAS  Google Scholar 

  31. Ambalavanan N, Novak ZE . Peptide growth factors in tracheal aspirates of mechanically ventilated preterm neonates. Pediatr Res 2003; 53: 240–244.

    Article  CAS  Google Scholar 

  32. Kazzi SN, Romero R, McLaughlin K, Ager J, Janisse J . Serial changes in levels of IL-6 and IL-1beta in premature infants at risk for bronchopulmonary dysplasia. Pediatr Pulmonol 2001; 31: 220–226.

    Article  CAS  Google Scholar 

  33. Lassus P, Nupponen I, Kari A, Pohjavuori M, Andersson S . Early postnatal dexamethasone decreases hepatocyte growth factor in tracheal aspirate fluid from premature infants. Pediatrics 2002; 110: 768–771.

    Article  Google Scholar 

  34. Danan C, Franco ML, Jarreau PH, Dassieu G, Chailley-Heu B, Bourbon J et al. High concentrations of keratinocyte growth factor in airways of premature infants predicted absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med 2002; 165: 1384–1387.

    Article  Google Scholar 

  35. Rehan VK, Torday JS . Lower parathyroid hormone-related protein content of tracheal aspirates in very low birth weight infants who develop bronchopulmonary dysplasia. Pediatr Res 2006; 60: 216–220.

    Article  CAS  Google Scholar 

  36. Lassus P, Ristimaki A, Ylikorkala O, Viinikka L, Andersson S . Vascular endothelial growth factor in human preterm lung. Am J Respir Crit Care Med 1999; 159: 1429–1433.

    Article  CAS  Google Scholar 

  37. D’Angio CT, Basavegowda K, Avissar NE, Finkelstein JN, Sinkin RA . Comparison of tracheal aspirate and bronchoalveolar lavage specimens from premature infants. Biol Neonate 2002; 82: 145–149.

    Article  Google Scholar 

  38. Nedrelow JH, Bhandari V . Interleukin (IL)-6 to vascular endothelial growth factor (VEGF) ratio predicts the development of Bronchopulmonary Dysplasia (BPD)/death in premature infants. Pediatr Res 2004; 55: 496A.

    Google Scholar 

  39. Watts CL, Bruce MC . Comparison of secretory component for immunoglobulin A with albumin as reference proteins in tracheal aspirate from preterm infants. J Pediatr 1995; 127: 113–122.

    Article  CAS  Google Scholar 

  40. Cederqvist K, Sorsa T, Tervahartiala T, Maisi P, Reunanen K, Lassus P et al. Matrix metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics 2001; 108: 686–692.

    Article  CAS  Google Scholar 

  41. Watts CL, Fanaroff AA, Bruce MC . Elevation of fibronectin levels in lung secretions of infants with respiratory distress syndrome and development of bronchopulmonary dysplasia. J Pediatr 1992; 120: 614–620.

    Article  CAS  Google Scholar 

  42. Lassus P, Heikkila P, Andersson LC, von Boguslawski K, Andersson S . Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants. J Pediatr 2003; 143: 199–202.

    Article  CAS  Google Scholar 

  43. Ekekezie II, Thibeault DW, Simon SD, Norberg M, Merrill JD, Ballard RA et al. Low levels of tissue inhibitors of metalloproteinases with a high matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio are present in tracheal aspirate fluids of infants who develop chronic lung disease. Pediatrics 2004; 113: 1709–1714.

    Article  Google Scholar 

  44. de Blic J, Midulla F, Barbato A, Clement A, Dab I, Eber E et al. Bronchoalveolar lavage in children. ERS Task Force on bronchoalveolar lavage in children. European Respiratory Society. Eur Respir J 2000; 15: 217–231.

    Article  CAS  Google Scholar 

  45. Cayabyab RG, Jones CA, Kwong KY, Hendershott C, Lecart C, Minoo P et al. Interleukin-1beta in the bronchoalveolar lavage fluid of premature neonates: a marker for maternal chorioamnionitis and predictor of adverse neonatal outcome. J Matern Fetal Neonatal Med 2003; 14: 205–211.

    Article  CAS  Google Scholar 

  46. Mahieu LM, De Dooy JJ, Ieven MM, Bridts CH, Stevens WJ . Increased levels of tumor necrosis factor-alpha and decreased levels of interleukin-12 p 70 in tracheal aspirates, within 2 h after birth, are associated with mortality among ventilated preterm infants. Pediatr Crit Care Med 2005; 6: 682–689.

    Article  Google Scholar 

  47. Bhandari V, Elias JA . Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med 2006; 41: 4–18.

    Article  CAS  Google Scholar 

  48. D’Angio CT, Maniscalco WM, Ryan RM, Avissar NE, Basavegowda K, Sinkin RA . Vascular endothelial growth factor in pulmonary lavage fluid from premature infants: effects of age and postnatal dexamethasone. Biol Neonate 1999; 76: 266–273.

    Article  Google Scholar 

  49. Yoder Jr MC, Chua R, Tepper R . Effect of dexamethasone on pulmonary inflammation and pulmonary function of ventilator-dependent infants with bronchopulmonary dysplasia. Am Rev Respir Dis 1991; 143: 1044–1048.

    Article  Google Scholar 

  50. Wang JY, Yeh TF, Lin YJ, Chen WY, Lin CH . Early postnatal dexamethasone therapy may lessen lung inflammation in premature infants with respiratory distress syndrome on mechanical ventilation. Pediatr Pulmonol 1997; 23: 193–197.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Charlene Martin, RN; Jane Hasson, RN; Valerie Gibson, RN and Lois Meyer, RN; for their help in screening babies for enrollment and collecting tracheal aspirates. We also thank Kee Pyon, PhD, for her help in analyzing data and reviewing the manuscript. This study was supported in part by grants from American Lung Association of New Jersey (ZH) and HL-74195 (VB) from the NHLBI of the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Bhandari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghai, Z., Faqiri, S., Saslow, J. et al. Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone. J Perinatol 28, 149–155 (2008). https://doi.org/10.1038/sj.jp.7211886

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211886

Keywords

This article is cited by

Search

Quick links