Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacogenomic associations in ABCB1 and CYP3A5 with acute kidney injury and chronic kidney disease after myeloablative hematopoietic cell transplantation

Abstract

Renal disease is a major complication in patients following myeloablative allogeneic hematopoietic cell transplantation (HCT). Post-HCT patients receive immunosuppressive regimens containing calcineurin inhibitor (CNIs), cyclosporine or tacrolimus, for graft-versus-host disease prophylaxis. In this retrospective trial, we investigated pharmacogenomic associations in the multidrug resistance (ABCB1) and cytochrome P450 3A5 (CYP3A5) genes and acute kidney injury (AKI) and chronic kidney disease (CKD) in a cohort of 121 patients. ABCB1 and CYP3A5 are responsible for the renal disposition of CNIs, which are known to be nephrotoxic. AKI was defined as doubling of baseline serum creatinine during the first 100 days post-HCT, and CKD as at least one glomerular filtration rate <60 ml/min/m2 between 6 and 18 months post-HCT. Patients were genotyped for CYP3A5*1>*3 and ABCB1 single nucleotide polymorphisms (SNPs) (1199G>A, 1236C>T, 2677G>T/A and 3435C>T). Odds ratios were calculated using logistic regression. Haplotype estimation and univariate association analyses were performed because of strong ABCB1 linkage disequilibrium (LD). AKI occurred in 48 of 121 patients (39.7%) and CKD in 16 of 66 patients (24.2%). No pharmacogenomic associations were found between ABCB1 and CYP3A5 SNPs and the incidences of AKI or CKD. The degree of LD(r2) between ABCB1 SNPs was estimated as follows: 2677G>T/3435C>T (0.44), 1236C>T/3435C>T (0.42) and 1236C>T/2677G>T (0.72). ABCB1 1199G>A showed no LD to other SNPs (<0.05). No associations were found between the most common ABCB1 haplotypes and AKI or CKD. Since no significant pharmacogenomic associations were observed, tailoring CNIs dosing based on these genotypes is unlikely to lower significantly the risk of renal injury following myeloablative HCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Abbreviations

ABCB1 or MDR1:

multidrug resistance gene

AKI:

acute kidney injury

CKD:

chronic kidney disease

CNIs:

calcineurin inhibitors

CYP3A5:

cytochrome P450 3A5

GVHD:

graft-versus-host disease

HCT:

hematopoietic cell transplantation

LD:

linkage disequilibrium

OR:

odds ratio

P-gp:

P-glycoprotein

SNP:

single nucleotide polymorphism

SOS:

sinusoidal obstruction syndrome

References

  1. McDonald GB, Slattery JT, Bouvier ME, Ren S, Batchelder AL, Kalhorn TF et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003; 101: 2043–2048.

    Article  CAS  PubMed  Google Scholar 

  2. Hingorani SR, Guthrie K, Batchelder A, Schoch G, Aboulhosn N, Manchion J et al. Acute renal failure after myeloablative hematopoietic cell transplant: incidence and risk factors. Kidney Int 2005; 67: 272–277.

    Article  PubMed  Google Scholar 

  3. Hingorani S . Chronic kidney disease in long-term survivors of hematopoietic cell transplantation: epidemiology, pathogenesis, and treatment. J Am Soc Nephrol 2006; 17: 1995–2005.

    Article  PubMed  Google Scholar 

  4. Hows JM, Palmer S, Gordon-Smith EC . Use of cyclosporin A in allogeneic bone marrow transplantation for severe aplastic anemia. Transplantation 1982; 33: 382–386.

    Article  CAS  PubMed  Google Scholar 

  5. Dai Y, Hebert MF, Isoherranen N, Davis CL, Marsh C, Shen DD et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006; 34: 836–847.

    Article  CAS  PubMed  Google Scholar 

  6. Dai Y, Iwanaga K, Lin YS, Hebert MF, Davis CL, Huang W et al. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem Pharmacol 2004; 68: 1889–1902.

    Article  CAS  PubMed  Google Scholar 

  7. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T . Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 1993; 268: 6077–6080.

    CAS  PubMed  Google Scholar 

  8. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–391.

    Article  CAS  PubMed  Google Scholar 

  9. Woodahl EL, Ho RJ . The role of MDR1 genetic polymorphisms in interindividual variability in P-glycoprotein expression and function. Curr Drug Metab 2004; 5: 11–19.

    Article  CAS  PubMed  Google Scholar 

  10. Woodahl EL, Yang Z, Bui T, Shen DD, Ho RJ . Multidrug resistance gene G1199A polymorphism alters efflux transport activity of P-glycoprotein. J Pharmacol Exp Ther 2004; 310: 1199–1207.

    Article  CAS  PubMed  Google Scholar 

  11. Woodahl EL, Yang Z, Bui T, Shen DD, Ho RJ . MDR1 G1199A polymorphism alters permeability of HIV protease inhibitors across P-glycoprotein-expressing epithelial cells. Aids 2005; 19: 1617–1625.

    Article  CAS  PubMed  Google Scholar 

  12. Johne A, Kopke K, Gerloff T, Mai I, Rietbrock S, Meisel C et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther 2002; 72: 584–594.

    Article  CAS  PubMed  Google Scholar 

  13. Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70: 189–199.

    Article  CAS  PubMed  Google Scholar 

  14. Kroetz DL, Pauli-Magnus C, Hodges LM, Huang CC, Kawamoto M, Johns SJ et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003; 13: 481–494.

    Article  CAS  PubMed  Google Scholar 

  15. Cascorbi I, Gerloff T, Johne A, Meisel C, Hoffmeyer S, Schwab M et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 2001; 69: 169–174.

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97: 3473–3478.

    Article  CAS  PubMed  Google Scholar 

  17. Givens RC, Lin YS, Dowling AL, Thummel KE, Lamba JK, Schuetz EG et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J Appl Physiol 2003; 95: 1297–1300.

    Article  CAS  PubMed  Google Scholar 

  18. Haehner BD, Gorski JC, Vandenbranden M, Wrighton SA, Janardan SK, Watkins PB et al. Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol Pharmacol 1996; 50: 52–59.

    CAS  PubMed  Google Scholar 

  19. Koch I, Weil R, Wolbold R, Brockmoller J, Hustert E, Burk O et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002; 30: 1108–1114.

    Article  CAS  PubMed  Google Scholar 

  20. Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62: 162–172.

    Article  CAS  PubMed  Google Scholar 

  21. Schinkel AH . The physiological function of drug-transporting P-glycoproteins. Semin Cancer Biol 1997; 8: 161–170.

    Article  CAS  PubMed  Google Scholar 

  22. Haenisch S, Zimmermann U, Dazert E, Wruck CJ, Dazert P, Siegmund S et al. Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenomics J 2007; 7: 56–65.

    Article  CAS  PubMed  Google Scholar 

  23. Siegsmund M, Brinkmann U, Schaffeler E, Weirich G, Schwab M, Eichelbaum M et al. Association of the P-glycoprotein transporter MDR1(C3435T) polymorphism with the susceptibility to renal epithelial tumors. J Am Soc Nephrol 2002; 13: 1847–1854.

    Article  CAS  PubMed  Google Scholar 

  24. Uwai Y, Masuda S, Goto M, Motohashi H, Saito H, Okuda M et al. Common single nucleotide polymorphisms of the MDR1 gene have no influence on its mRNA expression level of normal kidney cortex and renal cell carcinoma in Japanese nephrectomized patients. J Hum Genet 2004; 49: 40–45.

    Article  CAS  PubMed  Google Scholar 

  25. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV et al. A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. Science 2007; 315: 525–528.

    Article  CAS  Google Scholar 

  26. Burckart GJ, Liu XI . Pharmacogenetics in transplant patients: can it predict pharmacokinetics and pharmacodynamics? Ther Drug Monit 2006; 28: 23–30.

    Article  CAS  PubMed  Google Scholar 

  27. Eichelbaum M, Fromm MF, Schwab M . Clinical aspects of the MDR1 (ABCB1) gene polymorphism. Ther Drug Monit 2004; 26: 180–185.

    Article  CAS  PubMed  Google Scholar 

  28. Hebert MF, Dowling AL, Gierwatowski C, Lin YS, Edwards KL, Davis CL et al. Association between ABCB1 (multidrug resistance transporter) genotype and post-liver transplantation renal dysfunction in patients receiving calcineurin inhibitors. Pharmacogenetics 2003; 13: 661–674.

    Article  CAS  PubMed  Google Scholar 

  29. Hauser IA, Schaeffeler E, Gauer S, Scheuermann EH, Wegner B, Gossmann J et al. ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol 2005; 16: 1501–1511.

    Article  CAS  PubMed  Google Scholar 

  30. Hingorani SR, Peterson D, Schoch G, Chien JW, Hansen JA, McDonald GB . Genetic polymorphisms associated with acute kidney injury after hematopoietic cell transplant (HCT). J Am Soc Nephrol 2006; 17: 405A.

    Article  Google Scholar 

  31. Neitzel H . A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet 1986; 73: 320–326.

    Article  CAS  PubMed  Google Scholar 

  32. Chien JW, Zhao LP, Hansen JA, Fan WH, Parimon T, Clark JG . Genetic variation in bactericidal/permeability-increasing protein influences the risk of developing rapid airflow decline after hematopoietic cell transplantation. Blood 2006; 107: 2200–2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saito K, Miyake S, Moriya H, Yamazaki M, Itoh F, Imai K et al. Detection of the four sequence variations of MDR1 gene using TaqMan MGB probe based real-time PCR and haplotype analysis in healthy Japanese subjects. Clin Biochem 2003; 36: 511–518.

    Article  CAS  PubMed  Google Scholar 

  34. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P . Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8: R204–R212.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weiss AS, Sandmaier BM, Storer B, Storb R, McSweeney PA, Parikh CR . Chronic kidney disease following non-myeloablative hematopoietic cell transplantation. Am J Transplant 2006; 6: 89–94.

    Article  CAS  PubMed  Google Scholar 

  36. Manjunath G, Sarnak MJ, Levey AS . Estimating the glomerular filtration rate. Dos and don'ts for assessing kidney function. Postgrad Med 2001; 110: 55–62; quiz 11.

    Article  CAS  PubMed  Google Scholar 

  37. Schwartz GJ, Brion LP, Spitzer A . The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 1987; 34: 571–590.

    Article  CAS  PubMed  Google Scholar 

  38. Gooley TA, Leisenring W, Crowley J, Storer BE . Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18: 695–706.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Rodney JY Ho, Dr Edward J Kelly and Tot Bui from the DNA Sequencing and Gene Analysis Center in the Department of Pharmaceutics at the University of Washington. This study was supported by NIH CA18029. SRH is the principal investigator for NIDDK K23-DK063038. ELW is the recipient of the Elmer M and Joy B Plein Fellowship for Excellence in Pharmacy Education, School of Pharmacy, University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S McCune.

Additional information

Duality of interest

No duality of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodahl, E., Hingorani, S., Wang, J. et al. Pharmacogenomic associations in ABCB1 and CYP3A5 with acute kidney injury and chronic kidney disease after myeloablative hematopoietic cell transplantation. Pharmacogenomics J 8, 248–255 (2008). https://doi.org/10.1038/sj.tpj.6500472

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500472

Keywords

This article is cited by

Search

Quick links